The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

acetylcholine     2-acetyloxyethyl-trimethyl- azanium

Synonyms: Azetylcholin, Acetylcholinum, CHEMBL667, AG-D-69637, BSPBio_001792, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bromoacetylcholine

 

Psychiatry related information on Bromoacetylcholine

 

High impact information on Bromoacetylcholine

 

Chemical compound and disease context of Bromoacetylcholine

 

Biological context of Bromoacetylcholine

  • The insulinotropic effect of ACh results from two mechanisms: one involves a rise in [Ca(2+)](c) and the other involves a marked, PKC-mediated increase in the efficiency of Ca(2+) on exocytosis [12].
  • We have identified a mutation in the ache gene of the zebrafish, which abolishes ACh hydrolysis in homozygous animals completely [18].
  • Indomethacin eliminated the remaining Ach-induced vasodilation, resulting in frank vasoconstriction (-54% +/- 9%, n = 6) [19].
  • These findings offer novel insights into the mechanisms of ACh-mediated modulation of KC migration and wound reepithelialization, and may aid the development of novel methods to promote wound healing [20].
  • Acetylcholine (AcCho) elicited large currents (IAcCho) that were reduced by Zn2+ in a reversible and dose-dependent manner, with an IC50 of 27 microM and a Hill coefficient of 0 [21].
 

Anatomical context of Bromoacetylcholine

  • Acetylcholine (ACh), the major parasympathetic neurotransmitter, is released by intrapancreatic nerve endings during the preabsorptive and absorptive phases of feeding [12].
  • These findings show that endogenous NO, but not VIP, evoked by EFS can inhibit cholinergic neural responses via functional antagonism of ACh at the airway smooth muscle and that the contribution of this modulation is less marked in lower airways [22].
  • L-NMMA (64 mumol/min) increased resting coronary vascular resistance by 22% (P < 0.001), reduced distal epicardial coronary artery diameter by 12.6% (P < 0.001), and inhibited ACH-induced coronary epicardial and microvascular vasodilation [23].
  • The cells released catecholamines and DBH in response to acetylcholine (ACh), and this release was accompanied by changes in the vesicular and surface membranes observed at the ultrastructural level [24].
  • To test the hypothesis that keratinocyte (KC) migration is modulated by distinct muscarinic acetylcholine (ACh) receptor subtypes, we inactivated signaling through specific receptors in in vitro and in vivo models of reepithelialization by subtype-selective antagonists, small interfering RNA, and gene knockout in mice [20].
 

Associations of Bromoacetylcholine with other chemical compounds

  • Neurons that do not contain ACh, including GABA-containing neurons in the basal forebrain and preoptic area, are active in a reciprocal manner to the neurons of the arousal systems: one group discharges with slow cortical activity during SWS, and another discharges with behavioral quiescence and loss of postural muscle tone during SWS and PS [25].
  • Simultaneous intra-arterial infusion of L-NMMA (4 micromol/min) and ACh (12, 24, and 48 microg/min) was used to test whether any increase in endothelium-dependent vasodilation after lipid-lowering therapy could be blocked by this NO synthase inhibitor [26].
  • Injection of cDNA encoding the neuronal alpha7 subunit into Xenopus oocytes yields homomeric receptors showing responses to AcCho that have low affinity, fast desensitization, nonlinear current-voltage (I-V) relation, and sensitivity to alpha-bungarotoxin (alpha-BTX) and 5-hydroxytryptamine (5HT), both substances acting as antagonists [27].
  • Nitric oxide (NO) produced opposite effects on acetylcholine (ACh) release in identified neuroneuronal Aplysia synapses depending on the excitatory or the inhibitory nature of the synapse [28].
  • Choline levels in blood and cerebrospinal fluid increased markedly during treatment with Ch, affirming that oral Ch administration increases the amount of ACh precursor delivered to the brain [3].
 

Gene context of Bromoacetylcholine

  • SC-560 [5-(4-clorophenyl)-1-(4-metoxyphenyl)-3-trifluoromethylpirazole] (COX-1 inhibitor) did not modify the response to ACh in both groups [29].
  • Serum concentrations of TNFalpha were, within the RA group, inversely correlated with blood flow responses to both SNP (r=-0.67, p=0.002) and ACh (r=-0.64, p<0.005) [30].
  • The functional implication of this NO-CGRP interaction was further examined by testing the anti-aggregatory action of acetylcholine (Ach) [31].
  • The presented experiments clearly demonstrate the existence of essential elements of the cholinergic system (ChAT, VAChT, ACh) in the human endothelium [32].
  • Lymphocytes express all enzymes needed for ACh synthesis, including choline acetyltransferase (ChAT) [33].
 

Analytical, diagnostic and therapeutic context of Bromoacetylcholine

References

  1. Ultrastructural localization of choline acetyltransferase in vascular endothelial cells in rat brain. Parnavelas, J.G., Kelly, W., Burnstock, G. Nature (1985) [Pubmed]
  2. Presynaptic transmitter content controls the number of quanta released at a neuro-neuronal cholinergic synapse. Poulain, B., Baux, G., Tauc, L. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  3. Huntington's disease: clinical and chemical effects of choline administration. Growdon, J.H., Cohen, E.L., Wurtman, R.J. Ann. Neurol. (1977) [Pubmed]
  4. Uric Acid and endothelial dysfunction in essential hypertension. Zoccali, C., Maio, R., Mallamaci, F., Sesti, G., Perticone, F. J. Am. Soc. Nephrol. (2006) [Pubmed]
  5. Lowering of LDL cholesterol rather than moderate weight loss improves endothelium-dependent vasodilatation in obese women with previous gestational diabetes. Bergholm, R., Tiikkainen, M., Vehkavaara, S., Tamminen, M., Teramo, K., Rissanen, A., Yki-Järvinen, H. Diabetes Care (2003) [Pubmed]
  6. A cortical neuropeptide with neuronal depressant and sleep-modulating properties. de Lecea, L., Criado, J.R., Prospero-Garcia, O., Gautvik, K.M., Schweitzer, P., Danielson, P.E., Dunlop, C.L., Siggins, G.R., Henriksen, S.J., Sutcliffe, J.G. Nature (1996) [Pubmed]
  7. Tacrine, a reversible acetylcholinesterase inhibitor, induces myopathy. Jeyarasasingam, G., Yeluashvili, M., Quik, M. Neuroreport (2000) [Pubmed]
  8. In vivo assessment of the regulatory mechanism of cholinergic neuronal activity associated with motility in dog small intestine. Furuichi, A., Makimoto, N., Ogishima, M., Nakao, K., Tsukamoto, M., Kanematsu, T., Taniyama, K. Jpn. J. Pharmacol. (2001) [Pubmed]
  9. Hexamethylene diisocyanate induction of transient airway hyperresponsiveness in guinea pigs. Marek, W., Mensing, T., Riedel, F., Viso, N., Marczynski, B., Baur, X. Respiration; international review of thoracic diseases. (1997) [Pubmed]
  10. Quantification of Ca2+-activated K+ channels under hormonal control in pig pancreas acinar cells. Maruyama, Y., Petersen, O.H., Flanagan, P., Pearson, G.T. Nature (1983) [Pubmed]
  11. Transmitter-like action of ATP on patched membranes of cultured myoblasts and myotubes. Kolb, H.A., Wakelam, M.J. Nature (1983) [Pubmed]
  12. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Gilon, P., Henquin, J.C. Endocr. Rev. (2001) [Pubmed]
  13. Inhibitory action of dopamine on cat carotid chemoreceptors. Docherty, R.J., McQueen, D.S. J. Physiol. (Lond.) (1978) [Pubmed]
  14. Substance P preferentially inhibits large conductance nicotinic ACh receptor channels in rat intracardiac ganglion neurons. Cuevas, J., Adams, D.J. J. Neurophysiol. (2000) [Pubmed]
  15. Localization and characterization of the subtypes(s) of muscarinic receptor involved in prostacyclin synthesis in rabbit heart. Kan, H., Ruan, Y., Malik K, U. J. Pharmacol. Exp. Ther. (1996) [Pubmed]
  16. Behavioral and neurochemical changes in rats dosed repeatedly with diisopropylfluorophosphate. Bushnell, P.J., Padilla, S.S., Ward, T., Pope, C.N., Olszyk, V.B. J. Pharmacol. Exp. Ther. (1991) [Pubmed]
  17. Differential changes of adrenoceptor- and muscarinic receptor-linked prostacyclin synthesis by the aorta and urinary bladder of the diabetic rat. Jeremy, J.Y., Thompson, C.S., Mikhailidis, D.P. Br. J. Pharmacol. (1993) [Pubmed]
  18. Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Behra, M., Cousin, X., Bertrand, C., Vonesch, J.L., Biellmann, D., Chatonnet, A., Strähle, U. Nat. Neurosci. (2002) [Pubmed]
  19. Acquired microvascular dysfunction in inflammatory bowel disease: Loss of nitric oxide-mediated vasodilation. Hatoum, O.A., Binion, D.G., Otterson, M.F., Gutterman, D.D. Gastroenterology (2003) [Pubmed]
  20. Novel signaling pathways mediating reciprocal control of keratinocyte migration and wound epithelialization through M3 and M4 muscarinic receptors. Chernyavsky, A.I., Arredondo, J., Wess, J., Karlsson, E., Grando, S.A. J. Cell Biol. (2004) [Pubmed]
  21. Effects of Zn2+ on wild and mutant neuronal alpha7 nicotinic receptors. Palma, E., Maggi, L., Miledi, R., Eusebi, F. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  22. Modulation of cholinergic neural bronchoconstriction by endogenous nitric oxide and vasoactive intestinal peptide in human airways in vitro. Ward, J.K., Belvisi, M.G., Fox, A.J., Miura, M., Tadjkarimi, S., Yacoub, M.H., Barnes, P.J. J. Clin. Invest. (1993) [Pubmed]
  23. Nitric oxide activity in the human coronary circulation. Impact of risk factors for coronary atherosclerosis. Quyyumi, A.A., Dakak, N., Andrews, N.P., Husain, S., Arora, S., Gilligan, D.M., Panza, J.A., Cannon, R.O. J. Clin. Invest. (1995) [Pubmed]
  24. Functional and morphological characterization of isolated bovine adrenal medullary cells. Fenwick, E.M., Fajdiga, P.B., Howe, N.B., Livett, B.G. J. Cell Biol. (1978) [Pubmed]
  25. From waking to sleeping: neuronal and chemical substrates. Jones, B.E. Trends Pharmacol. Sci. (2005) [Pubmed]
  26. Increased bioavailability of nitric oxide after lipid-lowering therapy in hypercholesterolemic patients: a randomized, placebo-controlled, double-blind study. John, S., Schlaich, M., Langenfeld, M., Weihprecht, H., Schmitz, G., Weidinger, G., Schmieder, R.E. Circulation (1998) [Pubmed]
  27. Co-expression of the neuronal alpha7 and L247T alpha7 mutant subunits yields hybrid nicotinic receptors with properties of both wild-type alpha7 and alpha7 mutant homomeric receptors. Palma, E., Eusebi, F., Miledi, R. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  28. Opposite actions of nitric oxide on cholinergic synapses: which pathways? Mothet, J.P., Fossier, P., Tauc, L., Baux, G. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  29. Cyclooxygenase-2 inhibition improves vascular endothelial dysfunction in a rat model of endotoxic shock: role of inducible nitric-oxide synthase and oxidative stress. Virdis, A., Colucci, R., Fornai, M., Blandizzi, C., Duranti, E., Pinto, S., Bernardini, N., Segnani, C., Antonioli, L., Taddei, S., Salvetti, A., Del Tacca, M. J. Pharmacol. Exp. Ther. (2005) [Pubmed]
  30. Increased inflammatory activity parallels increased basal nitric oxide production and blunted response to nitric oxide in vivo in rheumatoid arthritis. Yki-Järvinen, H., Bergholm, R., Leirisalo-Repo, M. Ann. Rheum. Dis. (2003) [Pubmed]
  31. eNOS-dependent vascular interaction between nitric oxide and calcitonin gene-related peptide in mice: gender selectivity and effects on blood aggregation. Lee, W.I., Xu, Y., Fung, S.M., Fung, H.L. Regul. Pept. (2003) [Pubmed]
  32. The non-neuronal cholinergic system in the endothelium: evidence and possible pathobiological significance. Kirkpatrick, C.J., Bittinger, F., Unger, R.E., Kriegsmann, J., Kilbinger, H., Wessler, I. Jpn. J. Pharmacol. (2001) [Pubmed]
  33. Peripheral Choline Acetyltransferase is Expressed by Monocytes and Upregulated During Renal Allograft Rejection in Rats. Hecker, A., Lips, K.S., Pfeil, U., Kummer, W., Padberg, W., Grau, V. J. Mol. Neurosci. (2006) [Pubmed]
  34. Cyclic GMP mimics the muscarinic response in Xenopus oocytes: identity of ionic mechanisms. Dascal, N., Landau, E.M. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  35. Mechanism of action of EDRF on pressurized arteries: effect on K+ conductance. Kauser, K., Stekiel, W.J., Rubanyi, G., Harder, D.R. Circ. Res. (1989) [Pubmed]
  36. Platelet inhibitory effect of nitric oxide in the human coronary circulation: impact of endothelial dysfunction. Andrews, N.P., Husain, M., Dakak, N., Quyyumi, A.A. J. Am. Coll. Cardiol. (2001) [Pubmed]
 
WikiGenes - Universities