Purification of NSP1 reveals complex formation with 'GLFG' nucleoporins and a novel nuclear pore protein NIC96.
The essential C-terminal domain of NSP1 mediates assembly into the nuclear pore complex (NPC). To identify components which interact physically with this yeast nucleoporin, the tagged C-terminal domain of NSP1 (ProtA-NSP1) was isolated by affinity chromatography under non-denaturing conditions. The purified complex contains ProtA-NSP1, two previously identified 'GLFG' nucleoporins, NUP49 (NSP49) and p54 and a novel protein designated NIC96 (for Nucleoporin-Interacting Component of 96 kDa). Conversely, affinity purification of tagged NSP49 enriches for NSP1, the p54 and the NIC96 component. The NIC96 gene was cloned; it encodes a novel 839 amino acid protein essential for cell growth. By immunofluorescence, protein A-tagged NIC96 exhibits a punctate nuclear membrane staining indicative of nuclear pore location. Therefore, affinity purification of tagged nucleoporins has allowed the definition of a subcomplex of the NPC and analysis of physical interactions between nuclear pore proteins.[1]References
- Purification of NSP1 reveals complex formation with 'GLFG' nucleoporins and a novel nuclear pore protein NIC96. Grandi, P., Doye, V., Hurt, E.C. EMBO J. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg