The deuterium isotope effect for the alpha-hydroxylation of tamoxifen by rat liver microsomes accounts for the reduced genotoxicity of [D5-ethyl]tamoxifen.
This study describes the application of on line HPLC-electrospray ionization MS in the structural determination of the metabolites formed following incubation with rat liver microsomes of an equimolar mixture of the anticancer drug tamoxifen and its [D5-ethyl]-analogue. The ratio of ca 3:1 between unlabelled and D4-labelled alpha-hydroxytamoxifen, indicating a large isotope effect for this metabolic process, accounted for the previously observed lower yield of DNA adducts formed in the livers of rats treated with D5-tamoxifen compared with unlabelled drug. The loss of one deuterium atom on metabolism discriminated hydroxyethylated metabolites from others and enabled two further such metabolites to be detected, namely alpha-hydroxytamoxifen N-oxide and alpha-hydroxy-N-desmethyltamoxifen of which the latter is novel. Furthermore, the use of [alpha-D2-ethyl]- and [beta-D3-ethyl] tamoxifens discriminated alpha- from beta-hydroxylated metabolites and proved that the metabolites described here were alpha-hydroxylated. In contrast to the alpha-hydroxylated metabolites, the other metabolites identified, namely tamoxifen N-oxide, N-desmethyltamoxifen, 4-hydroxytamoxifen and their deuterated counterparts were not depleted in the deuterated components. The use of on line HPLC-electrospray ionization MS combined with isotopic labelling is a powerful technique for probing the structures of metabolites, and, applied to tamoxifen, has provided further evidence that alpha-hydroxylation is an important pathway for the conversion of the drug into a DNA-reactive metabolite.[1]References
- The deuterium isotope effect for the alpha-hydroxylation of tamoxifen by rat liver microsomes accounts for the reduced genotoxicity of [D5-ethyl]tamoxifen. Jarman, M., Poon, G.K., Rowlands, M.G., Grimshaw, R.M., Horton, M.N., Potter, G.A., McCague, R. Carcinogenesis (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg