The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Nitric oxide regulates the calcium current in isolated human atrial myocytes.

Cardiac Ca2+ current (ICa) was shown to be regulated by cGMP in a number of different species. Recently, we found that the NO-donor SIN-1 (3-morpholino-sydnonimine) exerts a dual regulation of ICa in frog ventricular myocytes via an accumulation of cGMP. To examine whether NO also regulates Ca2+ channels in human heart, we investigated the effects of SIN-1 on ICa in isolated human atrial myocytes. An extracellular application of SIN-1 produced a profound stimulatory effect on basal ICa at concentrations > 1 pM. Indeed, 10 pM SIN-1 induced a approximately 35% increase in ICa. The stimulatory effect of SIN-1 was maximal at 1 nM (approximately 2-fold increase in ICa) and was comparable with the effect of a saturating concentration (1 microM) of isoprenaline, a beta-adrenergic agonist. Increasing the concentration of SIN-1 to 1-100 microM reduced the stimulatory effect in two thirds of the cells. The stimulatory effect of SIN-1 was not mimicked by SIN-1C, the cleavage product of SIN-1 produced after liberation of NO. This suggests that NO mediates the effects of SIN-1 on ICa. Because, in frog heart, the stimulatory effect of SIN-1 on ICa was found to be due to cGMP-induced inhibition of cGMP-inhibited phosphodiesterase (cGI-PDE), we compared the effects of SIN-1 and milrinone, a cGI-PDE selective inhibitor, on ICa in human. Milrinone (10 microM) induced a strong stimulation of ICa (approximately 150%), demonstrating that cGI-PDE controls the amplitude of basal ICa in this tissue. In the presence of milrinone, SIN-1 (0.1-1 nM) had no stimulatory effect on ICa, suggesting that the effects of SIN-1 and MIL were not additive. We conclude that NO may stimulate ICa in human atrial myocytes via inhibition of the cGI-PDE.[1]


  1. Nitric oxide regulates the calcium current in isolated human atrial myocytes. Kirstein, M., Rivet-Bastide, M., Hatem, S., Bénardeau, A., Mercadier, J.J., Fischmeister, R. J. Clin. Invest. (1995) [Pubmed]
WikiGenes - Universities