The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Comparison of delta opiate receptor agonist induced reward and motor effects between the ventral pallidum and dorsal striatum.

The role of the ventral pallidum and the dorsal striatum in mediating the rewarding effects of the delta receptor specific agonist [2-D-penicillamine, 5-D-penicillamine]enkephalin (DPDPE) were evaluated in the rat using the intracranial self-stimulation paradigm. Reward shifts were indicated by the change in frequency required to maintain half-maximal responding while motor/performance changes were identified by increases or decreases in the maximum responding. Each hour-long test session consisted of three identical, consecutive 20 min rate-frequency curves. In an effort to ascertain possible heterogeneity of function along the rostrocaudal axis, DPDPE (0.0 nmol = saline dose, 0.3 nmol = low dose, 1.0 nmol = medium dose, 3.0 nmol = high dose) was microinjected into either the rostral or caudal region of the two structures. Microinjections into the caudate were positioned directly above the ventral pallidum placements resulting in centromedial or caudomedial caudate placements. DPDPE microinjections into the rostral ventral pallidum resulted in a significant reward increase (28% increase or -0.14 log Hg shift) only at the high dose. In contrast, caudal ventral pallidal DPDPE microinjections showed a dose-response effect with reward increases of 19, 22 and 31% (-0.09, -0.11 and -0.16 log Hz) for the low, medium and high dose, respectively. DPDPE microinjections into the centromedial caudate resulted in a large reward increase (29% or -0.15 log Hz) at the high dose, while caudomedial caudate DPDPE microinjections had no effect on reward. Motor/performance effects tended to follow the pattern of reward effects, with most regions showing motor increases ranging from 25 to 75% over baseline activity. The only exception was found in the caudomedial caudate, where microinjections of the high dose of DPDPE resulted in an approximate 20% suppression of motor/performance activity. These results demonstrate that the ventral pallidum and the mediocentral caudate play a role in modulating opiate rewards, and adds to the growing body of literature regarding the regional heterogeneity within the caudate and ventral pallidum.[1]


WikiGenes - Universities