A novel and major isoform of tyrosine hydroxylase in Drosophila is generated by alternative RNA processing.
We report that two isoforms of Drosophila tyrosine hydroxylase protein are encoded via alternatively spliced exons. The major isoform (Type II) contains a novel acidic extension of 71 amino acids in the amino-terminal regulatory domain, which is likely to alter the regulatory properties of the tyrosine hydroxylase protein. The minor isoform (Type I) corresponds to the cDNA sequence reported previously. We also report the structure of the Drosophila tyrosine hydroxylase (DTH) gene and the diversity and tissue localization of its transcripts. At least three types of DTH mRNA are generated from a single primary transcript through alternative splicing and polyadenylation. Type II mRNA is the most abundant tyrosine hydroxylase transcript in Drosophila and is found predominantly in the hypoderm throughout all stages of development. Type I mRNA is present only in the CNS, where it is the primary form. The DTH transcripts detected in the CNS contain a longer 3'-untranslated region than the transcript expressed in the hypoderm, due to differential polyadenylation. In contrast, the same start site is used for DTH gene transcription in both tissues. These results show unexpected diversity in the DTH transcripts and point out possible mechanisms for differential regulation of tyrosine hydroxylase activity in the CNS and in the hypoderm.[1]References
- A novel and major isoform of tyrosine hydroxylase in Drosophila is generated by alternative RNA processing. Birman, S., Morgan, B., Anzivino, M., Hirsh, J. J. Biol. Chem. (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg