Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria.
ATP dependent proteolytic degradation of misfolded proteins in the mitochondrial matrix is mediated by the PIM1 protease and depends on the molecular chaperone proteins mt-hsp70 and Mdj1p. Chaperone function is essential to maintain misfolded proteins in a soluble state, a prerequisite for their degradation by PIM1 protease. In the absence of functional mt-hsp70 or Mdj1p misfolded proteins either remain associated with mt-hsp70 or form aggregates and thereby are no longer substrates for PIM1 protease. Mdj1p is shown to regulate the ATP dependent association of an unfolded polypeptide chain with mt-hsp70 affecting binding to as well as release from mt-hsp70. These findings establish a central role of molecular chaperone proteins in the degradation of misfolded proteins by PIM1 protease and thereby demonstrate a functional interrelation between components of the folding machinery and the proteolytic system within mitochondria.[1]References
- Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. Wagner, I., Arlt, H., van Dyck, L., Langer, T., Neupert, W. EMBO J. (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg