The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Regulation of murine Max (Myn) parallels the regulation of c-Myc in differentiating murine erythroleukemia cells.

Max is a basic region-helix-loop-helix-leucine zipper protein that consists of two major isoforms, p22 (long form, Max-L) and p21 (short form, Max-S). These proteins are encoded by two [the 1.9- and the predominant 2.3-kilobase (kb) forms] of the five alternatively spliced max mRNA species. We now demonstrate that N,N'-hexamethylene bisacetamide-mediated differentiation of murine erythroleukemia cells leads to a pattern of biphasic down-regulation of the 1.9- and the 2.3-kb myn (murine max) mRNAs that closely parallels that which occurs for myc mRNA. In contrast, the p22/Myn-L and p21/Myn-S protein isoforms down-regulate in monophasic fashion. Unlike the short-lived myc mRNA, the myn message is quite stable. However, its half-life of 3-6 h is still consistent with the biphasic down-regulation that accompanies differentiation. Furthermore, unlike myc, the overexpression of which prevents differentiation, elevated max levels merely delay differentiation. Coincident with this is a delay in the second decline of c-myc mRNA. In N,N'-hexamethylene bisacetamide-induced cells blocked from differentiating by overexpression of c-, N- or L-myc, myn mRNA expression is constitutive. These findings suggest that myn may also be involved in differentiation.[1]

References

  1. Regulation of murine Max (Myn) parallels the regulation of c-Myc in differentiating murine erythroleukemia cells. Dunn, B.K., Cogliati, T., Cultraro, C.M., Bar-Ner, M., Segal, S. Cell Growth Differ. (1994) [Pubmed]
 
WikiGenes - Universities