The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Stimulation of fatty acid oxidation by a 3-thia fatty acid reduces triacylglycerol secretion in cultured rat hepatocytes.

The present work shows that when mitochondrial beta-oxidation is stimulated by the hypolipemic, non-beta-oxidizable fatty acid analogue tetradecylthioacetic acid, there is a decrease in the secretion of triacylglycerol in cultured rat hepatocytes. In order to study the effects of tetradecylthioacetic acid in cells with different fatty acid oxidation rates, cells were grown without or with L-carnitine supplement or with addition of the beta-oxidation inhibitor L-aminocarnitine. In cells grown without and with L-carnitine in the medium, the oxidation of [1-14C]oleic acid was stimulated by tetradecylthioacetic acid, whereas it was not significantly changed by palmitic acid. In cells grown with L-aminocarnitine, oxidation of [1-14C]oleic acid was almost abolished both in the absence and in presence of tetradecylthioacetic acid. The effect of tetradecylthioacetic acid and palmitic acid on incorporation of [1-14C]oleic acid into triacylglycerol was similar under all conditions. In the presence of L-carnitine, secretion of oleic acid-labeled triacylglycerol was reduced significantly more by tetradecylthioacetic acid than by palmitic acid. The effects of tetradecylthioacetic acid and palmitic acid on secretion of oleic acid-labeled triacylglycerol were reversed in cells grown with L-aminocarnitine, where palmitic acid was the stronger inhibitor. These results were substantiated by determination of mass of triacylglycerol secreted. It is concluded that tetradecylthioacetic acid reduces secretion of triacylglycerol from rat hepatocytes mainly by acutely stimulating fatty acid oxidation.[1]

References

 
WikiGenes - Universities