The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

DL-Carnitine     (3-carboxy-2-hydroxy-propyl)- trimethyl...

Synonyms: PRO123, CHEBI:3424, BSPBio_001992, KBioGR_000915, KBioSS_000467, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Carnitine


Psychiatry related information on Carnitine

  • We therefore assessed carnitine acetyl-transferase activity in selected brain regions and in isolated cerebral microvessels obtained at autopsy from patients with Alzheimer's disease and from age-matched control subjects [6].
  • In patients with primary carnitine deficiencies, which may be life-threatening, and some secondary deficiencies such as organic acidurias, the exogenously administered compound is clearly beneficial: by abolishing hypotonia, motor skills are improved, as are muscle weakness and wasting [7].
  • Acetyl-L-carnitine (ALCAR) is the acetyl ester of carnitine that has been reported to be beneficial in depressive disorders and Alzheimer's disease [8].
  • The 10-wk, randomized, double-blind intervention consisted of a hypoenergetic diet, high in protein (30% energy) and low in carbohydrate (40% energy), increased physical activity (number of steps taken per day), and intake of a supplement (carnitine or placebo) [9].
  • These results demonstrate that the BoNTx-lesioned rat can be used as a model for dementia and that cognitive deficits can be alleviated in part by BDNF gene transfer or carnitine administration [10].

High impact information on Carnitine


Chemical compound and disease context of Carnitine


Biological context of Carnitine


Anatomical context of Carnitine


Associations of Carnitine with other chemical compounds

  • We report the crystal structures of murine carnitine acetyltransferase (CRAT), alone and in complex with its substrate carnitine or CoA [28].
  • Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle [29].
  • Measurements in fibroblasts confirmed deficient oxidation of palmitate and showed normal activities of the carnitine palmitoyltransferases I and II and of the three acyl-CoA dehydrogenases [22].
  • Thus, the current studies illustrate the close interaction between the CoA and carnitine pools in the exercising human skeletal muscle, and they underscore the important role of carnitine in maintaining the muscular CoASH content during exhaustive exercise [30].
  • Also, the preference for choline over carnitine as an acetyl acceptor is seen to result from both electrostatic and steric blocks to carnitine binding at the active site [31].

Gene context of Carnitine


Analytical, diagnostic and therapeutic context of Carnitine


  1. Short-chain acyl-CoA dehydrogenase deficiency associated with a lipid-storage myopathy and secondary carnitine deficiency. Turnbull, D.M., Bartlett, K., Stevens, D.L., Alberti, K.G., Gibson, G.J., Johnson, M.A., McCulloch, A.J., Sherratt, H.S. N. Engl. J. Med. (1984) [Pubmed]
  2. Serum carnitine in Reye's syndrome. Hinshaw, W.B., Glenn, J.L., Hatch, K.M. N. Engl. J. Med. (1980) [Pubmed]
  3. A disorder of muscle lipid metabolism and myoglobinuria. Absence of carnitine palmityl transferase. Bank, W.J., DiMauro, S., Bonilla, E., Capuzzi, D.M., Rowland, L.P. N. Engl. J. Med. (1975) [Pubmed]
  4. Brief report: renal tubular acidosis in carnitine palmitoyltransferase type 1 deficiency. Falik-Borenstein, Z.C., Jordan, S.C., Saudubray, J.M., Brivet, M., Demaugre, F., Edmond, J., Cederbaum, S.D. N. Engl. J. Med. (1992) [Pubmed]
  5. Systemic carnitine deficiency presenting as familial endocardial fibroelastosis: a treatable cardiomyopathy. Tripp, M.E., Katcher, M.L., Peters, H.A., Gilbert, E.F., Arya, S., Hodach, R.J., Shug, A.L. N. Engl. J. Med. (1981) [Pubmed]
  6. Carnitine acetyltransferase activity in the human brain and its microvessels is decreased in Alzheimer's disease. Kalaria, R.N., Harik, S.I. Ann. Neurol. (1992) [Pubmed]
  7. l-Carnitine. A preliminary review of its pharmacokinetics, and its therapeutic use in ischaemic cardiac disease and primary and secondary carnitine deficiencies in relationship to its role in fatty acid metabolism. Goa, K.L., Brogden, R.N. Drugs (1987) [Pubmed]
  8. Effects of long-term acetyl-L-carnitine administration in rats: I. increased dopamine output in mesocorticolimbic areas and protection toward acute stress exposure. Tolu, P., Masi, F., Leggio, B., Scheggi, S., Tagliamonte, A., De Montis, M.G., Gambarana, C. Neuropsychopharmacology (2002) [Pubmed]
  9. The lowering of plasma lipids following a weight reduction program is related to increased expression of the LDL receptor and lipoprotein lipase. Patalay, M., Lofgren, I.E., Freake, H.C., Koo, S.I., Fernandez, M.L. J. Nutr. (2005) [Pubmed]
  10. Animal model of dementia induced by entorhinal synaptic damage and partial restoration of cognitive deficits by BDNF and carnitine. Ando, S., Kobayashi, S., Waki, H., Kon, K., Fukui, F., Tadenuma, T., Iwamoto, M., Takeda, Y., Izumiyama, N., Watanabe, K., Nakamura, H. J. Neurosci. Res. (2002) [Pubmed]
  11. Skeletal muscle lipid metabolism in exercise and insulin resistance. Kiens, B. Physiol. Rev. (2006) [Pubmed]
  12. Carnitine--metabolism and functions. Bremer, J. Physiol. Rev. (1983) [Pubmed]
  13. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nezu, J., Tamai, I., Oku, A., Ohashi, R., Yabuuchi, H., Hashimoto, N., Nikaido, H., Sai, Y., Koizumi, A., Shoji, Y., Takada, G., Matsuishi, T., Yoshino, M., Kato, H., Ohura, T., Tsujimoto, G., Hayakawa, J., Shimane, M., Tsuji, A. Nat. Genet. (1999) [Pubmed]
  14. Clinical and laboratory findings in the oculocerebrorenal syndrome of Lowe, with special reference to growth and renal function. Charnas, L.R., Bernardini, I., Rader, D., Hoeg, J.M., Gahl, W.A. N. Engl. J. Med. (1991) [Pubmed]
  15. Partial muscle carnitine palmitoyltransferase-A deficiency. Rhabdomyolysis associated with transiently decreased muscle carnitine content after ibuprofen therapy. Ross, N.S., Hoppel, C.L. JAMA (1987) [Pubmed]
  16. Oral carnitine therapy in children with cystinosis and renal Fanconi syndrome. Gahl, W.A., Bernardini, I., Dalakas, M., Rizzo, W.B., Harper, G.S., Hoeg, J.M., Hurko, O., Bernar, J. J. Clin. Invest. (1988) [Pubmed]
  17. Plasma and muscle free carnitine deficiency due to renal Fanconi syndrome. Bernardini, I., Rizzo, W.B., Dalakas, M., Bernar, J., Gahl, W.A. J. Clin. Invest. (1985) [Pubmed]
  18. The connections between C75 and obesity drug-target pathways. Kuhajda, F.P., Landree, L.E., Ronnett, G.V. Trends Pharmacol. Sci. (2005) [Pubmed]
  19. Genomic interval engineering of mice identifies a novel modulator of triglyceride production. Zhu, Y., Jong, M.C., Frazer, K.A., Gong, E., Krauss, R.M., Cheng, J.F., Boffelli, D., Rubin, E.M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  20. Pivalate-generating prodrugs and carnitine homeostasis in man. Brass, E.P. Pharmacol. Rev. (2002) [Pubmed]
  21. Hormonal control of ketogenesis. Rapid activation of hepatic ketogenic capacity in fed rats by anti-insulin serum and glucagon. McGarry, J., Wright, P.H., Foster, D.W. J. Clin. Invest. (1975) [Pubmed]
  22. Carnitine-acylcarnitine translocase deficiency with severe hypoglycemia and auriculo ventricular block. Translocase assay in permeabilized fibroblasts. Pande, S.V., Brivet, M., Slama, A., Demaugre, F., Aufrant, C., Saudubray, J.M. J. Clin. Invest. (1993) [Pubmed]
  23. Carnitine transport in human intestinal biopsy specimens. Demonstration of an active transport system. Hamilton, J.W., Li, B.U., Shug, A.L., Olsen, W.A. Gastroenterology (1986) [Pubmed]
  24. In vivo studies of intestinal carnitine absorption in rats. Gudjonsson, H., Li, B.U., Shug, A.L., Olsen, W.A. Gastroenterology (1985) [Pubmed]
  25. Recurrent hypoglycemia associated with glutaric aciduria type II in an adult. Dusheiko, G., Kew, M.C., Joffe, B.I., Lewin, J.R., Mantagos, S., Tanaka, K. N. Engl. J. Med. (1979) [Pubmed]
  26. Primary carnitine deficiency due to a failure of carnitine transport in kidney, muscle, and fibroblasts. Treem, W.R., Stanley, C.A., Finegold, D.N., Hale, D.E., Coates, P.M. N. Engl. J. Med. (1988) [Pubmed]
  27. Increased hepatic mitochondrial capacity in rats with hydroxy-cobalamin[c-lactam]-induced methylmalonic aciduria. Krahenbuhl, S., Ray, D.B., Stabler, S.P., Allen, R.H., Brass, E.P. J. Clin. Invest. (1990) [Pubmed]
  28. Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport. Jogl, G., Tong, L. Cell (2003) [Pubmed]
  29. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. Rasmussen, B.B., Holmbäck, U.C., Volpi, E., Morio-Liondore, B., Paddon-Jones, D., Wolfe, R.R. J. Clin. Invest. (2002) [Pubmed]
  30. Relationship between the coenzyme A and the carnitine pools in human skeletal muscle at rest and after exhaustive exercise under normoxic and acutely hypoxic conditions. Friolet, R., Hoppeler, H., Krähenbühl, S. J. Clin. Invest. (1994) [Pubmed]
  31. Choline acetyltransferase structure reveals distribution of mutations that cause motor disorders. Cai, Y., Cronin, C.N., Engel, A.G., Ohno, K., Hersh, L.B., Rodgers, D.W. EMBO J. (2004) [Pubmed]
  32. Association of organic cation transporter risk haplotype with perianal penetrating Crohn's disease but not with susceptibility to IBD. Vermeire, S., Pierik, M., Hlavaty, T., Claessens, G., van Schuerbeeck, N., Joossens, S., Ferrante, M., Henckaerts, L., Bueno de Mesquita, M., Vlietinck, R., Rutgeerts, P. Gastroenterology (2005) [Pubmed]
  33. Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. van Roermund, C.W., Hettema, E.H., van den Berg, M., Tabak, H.F., Wanders, R.J. EMBO J. (1999) [Pubmed]
  34. Discovery of the ergothioneine transporter. Gründemann, D., Harlfinger, S., Golz, S., Geerts, A., Lazar, A., Berkels, R., Jung, N., Rubbert, A., Schömig, E. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  35. The subcellular localization of acetyl-CoA carboxylase 2. Abu-Elheiga, L., Brinkley, W.R., Zhong, L., Chirala, S.S., Woldegiorgis, G., Wakil, S.J. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  36. Carnitine status of continuous ambulatory peritoneal dialysis patients. Albright, R.K., Kram, B.W., White, R.P. Lancet (1982) [Pubmed]
  37. L-carnitine therapy in home parenteral nutrition patients with abnormal liver tests and low plasma carnitine concentrations. Bowyer, B.A., Miles, J.M., Haymond, M.W., Fleming, C.R. Gastroenterology (1988) [Pubmed]
  38. Lipid-lowering effect of carnitine in patients with type-IV hyperlipoproteinaemia. Maebashi, M., Kawamura, N., Sato, M., Imamura, A., Yoshinaga, K. Lancet (1978) [Pubmed]
WikiGenes - Universities