Gating of inwardly rectifying K+ channels localized to a single negatively charged residue.
Inwardly rectifying K+ channels (IRKs) conduct current preferentially in the inward direction. This inward rectification has two components: voltage-dependent blockade by intracellular Mg2+ (Mg2+i) and intrinsic gating. Two members of this channel family, IRK1 (ref. 10) and ROMK1 (ref. 11), differ markedly in affinity for Mg2+i (ref. 12). We found that IRK1 and ROMK1 differ in voltage-dependent gating and searched for the gating structure by large-scale and site-directed mutagenesis. We found that a single amino-acid change within the putative transmembrane domain M2, aspartate (D) in IRK1 to the corresponding asparagine (N) in ROMK1, controls the gating phenotype. Mutation D172N in IRK1 produced ROMK1-like gating whereas the reverse mutation in ROMK1--N171D-- produced IRK1-like gating. Thus, a single negatively charged residue seems to be a crucial determinant of gating.[1]References
- Gating of inwardly rectifying K+ channels localized to a single negatively charged residue. Wible, B.A., Taglialatela, M., Ficker, E., Brown, A.M. Nature (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg