The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inositol 1,4,5,6-tetrakisphosphate is phosphorylated in rat liver by a 3-kinase that is distinct from inositol 1,4,5-trisphosphate 3-kinase.

Liver homogenates phosphorylated inositol 1,4,5,6-tetrakisphosphate exclusively to inositol 1,3,4,5,6-pentakisphosphate. Approximately 30% of this phosphorylating activity was associated with the particulate fraction of the cell, in contrast to the inositol 3,4,5,6-tetrakisphosphate 1-kinase, which was 90% soluble. This soluble 1-kinase activity was resolved from the soluble activity that phosphorylated inositol 1,4,5,6-tetrakisphosphate by anion-exchange chromatography. The two phosphorylating activities were also found to be differentially inhibited by inositol 1,3,4-trisphosphate (IC50 for 3-kinase > 100 microM; IC50 for 1-kinase < 1 microM). Thus, we have demonstrated that inositol 1,4,5,6-tetrakisphosphate is phosphorylated directly by a 3-kinase, and inositol 3,4,5,6-tetrakisphosphate is not an obligatory intermediate, in contrast to one previous model (Oliver, K. G., Putney, J. W., Jr., Obie, J. F., and Shears, S. B. (1992) J. Biol. Chem. 267, 21528-21534). Inositol 1,4,5,6-tetrakisphosphate 3-kinase was inhibited by inositol 1,3,4,6-tetrakisphosphate (IC50, 1 microM). Soluble inositol 1,4,5,6-tetrakisphosphate 3-kinase and inositol 1,4,5-trisphosphate 3-kinase were resolved by anion-exchange chromatography. Furthermore, cDNA clones of two isozymes of inositol 1,4,5-trisphosphate 3-kinase from rat and human brain did not phosphorylate inositol 1,4,5,6-tetrakisphosphate. Thus, these two 3-kinase activities are performed by distinct enzymes.[1]

References

 
WikiGenes - Universities