The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Drosophila tissue-specific transcription factor NTF-1 contains a novel isoleucine-rich activation motif.

The Drosophila tissue-specific transcription factor NTF-1 provides a useful model system for studying the mechanisms by which promoter-selective factors control the development of a multicellular organism. A number of promoters that may be targets of NTF-1 regulation have been identified. For example, NTF-1 plays a critical role in the tissue-specific expression of the Drosophila Dopa decarboxylase gene. Additionally, by using in vitro assays, it has been possible to characterize the mechanism of NTF-1 activation, revealing its dependence on specific coactivators, or TAFs. Here, we report the use of both in vivo and in vitro assays to identify the functional domains of NTF-1. These consist of an unusually large, unique DNA-binding and dimerization domain, as well as a novel, isoleucine-rich activation domain. This 56-amino-acid activation region fails to interact with the putative Sp1 coactivator, dTAFII110, and thus appears to use a mechanism distinct from the glutamine-rich activation domain of Sp1. Additionally, NTF-1 appears to activate transcription in a species-specific manner, utilizing distinct domains in Drosophila and yeast.[1]

References

 
WikiGenes - Universities