Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase.
The wee1 tyrosine kinase and cdc25 tyrosine phosphatase of fission yeast play antagonistic roles in the induction of mitosis through cdc2 regulation. We show here that the human wee1-like tyrosine kinase is a nuclear protein that ensures the completion of DNA replication prior to mitosis in cells expressing otherwise catastrophic levels of cdc2 activators. Paradoxically, wee1-rescued cells display very high levels of mitotic cdc2 kinase activity. We account for this anomaly by our observation that the cdc2 activator, cdc25C, is a cytoplasmic protein that, like cyclin B1, enters the nucleus at the G2/M transition. Thus, cdc2 is likely to be activated in the cytoplasm and requires nuclear localization to initiate both cytoplasmic and nuclear mitotic transformations. The human wee1 kinase appears to coordinate the transition between DNA replication and mitosis by protecting the nucleus from this cytoplasmically activated cdc2 kinase.[1]References
- Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Heald, R., McLoughlin, M., McKeon, F. Cell (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg