The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

VMA13 encodes a 54-kDa vacuolar H(+)-ATPase subunit required for activity but not assembly of the enzyme complex in Saccharomyces cerevisiae.

Previous purifications and characterizations of the Saccharomyces cerevisiae vacuolar proton-translocating ATPase (V-ATPase) have indicated that this enzyme is a multisubunit complex composed of at least eight subunits of 100-, 69-, 60-, 42-, 36-, 32-, 27-, and 17-kDa (Kane, P. M., Yamashiro, C. T., and Stevens, T. H. (1989) J. Biol. Chem. 264, 19236-19244). We report the cloning and characterization of an additional V-ATPase subunit, the 54-kDa subunit, which is encoded by the VMA13 gene. VMA13 was isolated by complementation of the growth phenotypes associated with the vma13 mutation, which was originally described as cls11 (Ohya, Y., Umemoto, N., Tanida, I., Ohta, A., Iida, H., and Anraku, Y. (1991) J. Biol. Chem. 266, 13971-13977). The nucleotide sequence of the VMA13 gene predicted a hydrophilic polypeptide with a calculated molecular mass of 54,415 daltons. The VMA13 54-kDa gene product resides on the vacuolar membrane and co-purified with the active V-ATPase complex. Characterization of a null vma13 mutant (delta vma13) revealed that the Vma13 polypeptide is essential for V-ATPase activity. However, the Vma13 polypeptide is not required for targeting of the other V-ATPase subunits (100-, 69-, 60-, 42-, 27-, or 17-kDa subunits) to the vacuolar membrane as shown by the association of these subunits with vacuolar membranes isolated from delta vma13 cells. The nature of the V-ATPase "complex" in delta vma13 mutant is, nevertheless, fundamentally different from the wild-type enzyme. This is evidenced by the fact that the inactive V-ATPase complex from delta vma13 cells is less stable than the wild-type enzyme. Taken together, these results indicate that VMA13 encodes the 54-kDa subunit of the V-ATPase and that this subunit is essential for activity, but not assembly, of the enzyme complex.[1]


  1. VMA13 encodes a 54-kDa vacuolar H(+)-ATPase subunit required for activity but not assembly of the enzyme complex in Saccharomyces cerevisiae. Ho, M.N., Hirata, R., Umemoto, N., Ohya, Y., Takatsuki, A., Stevens, T.H., Anraku, Y. J. Biol. Chem. (1993) [Pubmed]
WikiGenes - Universities