The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Molecular recognition of antigen involves lattice formation between CD4, MHC class II and TCR molecules.

Recent evidence indicates that CD4 stably binds to major histocompatibility complex (MHC) class II only after assuming an oligomeric state: the membrane-distal CD4 D1-D2 module interacts directly with MHC class II, whereas the membrane-proximal CD4 D3-D4 module mediates oligomerization. This results in the formation of aggregates critical for T-cell activation. The T-cell receptor (TCR) regulates specific crosslinking and is itself dependent on lattice formation to trigger physiological T-cell responses. Here, Toshiko Sakihama, Alex Smolyar and Ellis Reinherz discuss the molecular nature of CD4-MHC class II clustering and how, despite each of the component interactions being of low affinity, the molecular matrix renders T-cell recognition extremely specific and sensitive.[1]

References

 
WikiGenes - Universities