The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Primary structure and properties of the formyltransferase from the mesophilic Methanosarcina barkeri: comparison with the enzymes from thermophilic and hyperthermophilic methanogens.

The ftr gene encoding formylmethanofuran: tetrahydromethanopterin formyltransferase (Ftr) from Methanosarcina barkeri was cloned, sequenced, and functionally expressed in Escherichia coli. The overproduced enzyme was purified eightfold to apparent homogeneity, and its catalytic properties were determined. The primary structure and the hydropathic character of the formyltransferase from Methanosarcina barkeri were compared with those of the enzymes from Methanobacterium thermoautotrophicum, Methanothermus fervidus, and Methanopyrus kandleri. The amino acid sequence of the enzyme from Methanosarcina barkeri was 64%, 61%, and 59% identical to that of the enzyme from Methanobacterium thermoautotrophicum, Methanothermus fervidus, and Methanopyrus kandleri, respectively. A negative correlation between the hydrophobicity of the enzymes and both the growth temperature optimum and the intracellular salt concentration of the four organisms was observed. The hydrophobicity of amino acid composition was +21.6 for the enzyme from Methanosarcina barkeri (growth temperature optimum 37 degrees C, intracellular salt concentrationapproximately 0.3 M), +9.9 for the enzyme from Methanobacterium thermoautotrophicum (65 degrees C,approximately 0.7 M), -20.8 for the enzyme from Methanothermus fervidus (83 degrees C,approximately 1.0 M) and -31.4 for the enzyme from Methanopyrus kandleri (98 degrees C, > 1.1 M). Generally, a positive correlation between hydrophobicity and thermophilicity of enzymes and a negative correlation between hydrophobicity and halophilicity of enzymes are observed. The findings therefore indicate that the hydropathic character of the formyltransferases compared is mainly determined by the intracellular salt concentration rather than by temperature. Sequence similarities between the formyltransferases from methanogens and an open reading frame from Methylobacterium extorquens AM1 are discussed.[1]

References

 
WikiGenes - Universities