The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Methanobacterium


High impact information on Methanobacterium

  • Because the synthesis of aminoacyl-tRNAs containing each of the twenty amino acids is a universally conserved, essential reaction, the absence of a recognizable gene for cysteinyl tRNA synthetase in the genomes of Archae such as Methanococcus jannaschii and Methanobacterium thermoautotrophicum has been difficult to interpret [6].
  • A unique carbon dioxide fixation pathway that gives rise to asymmetric labeling of acetyl coenzyme A has been demonstrated in Methanobacterium thermoautotrophicum [7].
  • Counteracting the mutagenic effect of hydrolytic deamination of DNA 5-methylcytosine residues at high temperature: DNA mismatch N-glycosylase Mig.Mth of the thermophilic archaeon Methanobacterium thermoautotrophicum THF [8].
  • Furthermore, we found in the archaebacterium Methanobacterium thermoautotrophicum a gene similar to the higher eukaryote photolyase genes, but we could not obtain evidence for the presence of a homologous gene in the human genome [9].
  • Zinc-bundle structure of the essential RNA polymerase subunit RPB10 from Methanobacterium thermoautotrophicum [10].

Chemical compound and disease context of Methanobacterium


Biological context of Methanobacterium


Anatomical context of Methanobacterium


Associations of Methanobacterium with chemical compounds


Gene context of Methanobacterium


Analytical, diagnostic and therapeutic context of Methanobacterium


  1. Tungstate Uptake by a highly specific ABC transporter in Eubacterium acidaminophilum. Makdessi, K., Andreesen, J.R., Pich, A. J. Biol. Chem. (2001) [Pubmed]
  2. Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression. Anderson, J.C., Schultz, P.G. Biochemistry (2003) [Pubmed]
  3. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum. Weimer, P.J., Zeikus, J.G. Appl. Environ. Microbiol. (1977) [Pubmed]
  4. Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium. Chen, M., Wolin, M.J. Appl. Environ. Microbiol. (1977) [Pubmed]
  5. Determination of the cDNA sequence for the human mitochondrial 75-kDa Fe-S protein of NADH-coenzyme Q reductase. Chow, W., Ragan, I., Robinson, B.H. Eur. J. Biochem. (1991) [Pubmed]
  6. An aminoacyl tRNA synthetase whose sequence fits into neither of the two known classes. Fàbrega, C., Farrow, M.A., Mukhopadhyay, B., de Crécy-Lagard, V., Ortiz, A.R., Schimmel, P. Nature (2001) [Pubmed]
  7. Indirect observation by 13C NMR spectroscopy of a novel CO2 fixation pathway in methanogens. Evans, J.N., Tolman, C.J., Roberts, M.F. Science (1986) [Pubmed]
  8. Counteracting the mutagenic effect of hydrolytic deamination of DNA 5-methylcytosine residues at high temperature: DNA mismatch N-glycosylase Mig.Mth of the thermophilic archaeon Methanobacterium thermoautotrophicum THF. Horst, J.P., Fritz, H.J. EMBO J. (1996) [Pubmed]
  9. A new class of DNA photolyases present in various organisms including aplacental mammals. Yasui, A., Eker, A.P., Yasuhira, S., Yajima, H., Kobayashi, T., Takao, M., Oikawa, A. EMBO J. (1994) [Pubmed]
  10. Zinc-bundle structure of the essential RNA polymerase subunit RPB10 from Methanobacterium thermoautotrophicum. Mackereth, C.D., Arrowsmith, C.H., Edwards, A.M., McIntosh, L.P. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  11. Component A2 of methylcoenzyme M reductase system from Methanobacterium thermoautotrophicum delta H: nucleotide sequence and functional expression by Escherichia coli. Kuhner, C.H., Lindenbach, B.D., Wolfe, R.S. J. Bacteriol. (1993) [Pubmed]
  12. Expression of the Methanobacterium thermoautotrophicum hpt gene, encoding hypoxanthine (Guanine) phosphoribosyltransferase, in Escherichia coli. Sauer, J., Nygaard, P. J. Bacteriol. (1999) [Pubmed]
  13. Tryptophan gene cluster of Methanobacterium thermoautotrophicum Marburg: molecular cloning and nucleotide sequence of a putative trpEGCFBAD operon. Meile, L., Stettler, R., Banholzer, R., Kotik, M., Leisinger, T. J. Bacteriol. (1991) [Pubmed]
  14. Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Winter, J.U., Wolfe, R.S. Arch. Microbiol. (1980) [Pubmed]
  15. The hemA gene encoding glutamyl-tRNA reductase from the archaeon Methanobacterium thermoautotrophicum strain Marburg. Hungerer, C., Weiss, D.S., Thauer, R.K., Jahn, D. Bioorg. Med. Chem. (1996) [Pubmed]
  16. The biosynthesis of methylated amino acids in the active site region of methyl-coenzyme M reductase. Selmer, T., Kahnt, J., Goubeaud, M., Shima, S., Grabarse, W., Ermler, U., Thauer, R.K. J. Biol. Chem. (2000) [Pubmed]
  17. Cloning, expression, and nucleotide sequence of the formate dehydrogenase genes from Methanobacterium formicicum. Shuber, A.P., Orr, E.C., Recny, M.A., Schendel, P.F., May, H.D., Schauer, N.L., Ferry, J.G. J. Biol. Chem. (1986) [Pubmed]
  18. Growth- and substrate-dependent transcription of the formate dehydrogenase (fdhCAB) operon in Methanobacterium thermoformicicum Z-245. Nölling, J., Reeve, J.N. J. Bacteriol. (1997) [Pubmed]
  19. Cyclic 2,3-diphosphoglycerate as a component of a new branch in gluconeogenesis in Methanobacterium thermoautotrophicum delta H. Gorkovenko, A., Roberts, M.F. J. Bacteriol. (1993) [Pubmed]
  20. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium. Balch, W.E., Wolfe, R.S. J. Bacteriol. (1979) [Pubmed]
  21. Purification and characterization of an anabolic fumarate reductase from Methanobacterium thermoautotrophicum. Khandekar, S.S., Eirich, L.D. Appl. Environ. Microbiol. (1989) [Pubmed]
  22. ATP synthesis in Methanobacterium thermoautotrophicum coupled to CH4 formation from H2 and CO2 in the apparent absence of an electrochemical proton potential across the cytoplasmic membrane. Schönheit, P., Beimborn, D.B. Eur. J. Biochem. (1985) [Pubmed]
  23. Incorporation of 8 succinate per mol nickel into factors F430 by Methanobacterium thermoautotrophicum. Diekert, G., Gilles, H.H., Jaenchen, R., Thauer, R.K. Arch. Microbiol. (1980) [Pubmed]
  24. Photoactivation of the 2-(methylthio)ethanesulfonic acid reductase from Methanobacterium. Olson, K.D., McMahon, C.W., Wolfe, R.S. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  25. Component A of the methyl coenzyme M methylreductase system of Methanobacterium: resolution into four components. Nagle, D.P., Wolfe, R.S. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  26. A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain delta H encodes a polyferredoxin. Reeve, J.N., Beckler, G.S., Cram, D.S., Hamilton, P.T., Brown, J.W., Krzycki, J.A., Kolodziej, A.F., Alex, L., Orme-Johnson, W.H., Walsh, C.T. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  27. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium. Bobik, T.A., Wolfe, R.S. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  28. Formyl-methanofuran synthesis in Methanobacterium thermoautotrophicum. Bobik, T.A., DiMarco, A.A., Wolfe, R.S. FEMS Microbiol. Rev. (1990) [Pubmed]
  29. A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Bunjun, S., Stathopoulos, C., Graham, D., Min, B., Kitabatake, M., Wang, A.L., Wang, C.C., Vivarès, C.P., Weiss, L.M., Söll, D. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  30. Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae. Van Aelst, L., Hohmann, S., Bulaya, B., de Koning, W., Sierkstra, L., Neves, M.J., Luyten, K., Alijo, R., Ramos, J., Coccetti, P. Mol. Microbiol. (1993) [Pubmed]
  31. Structure-based functional classification of hypothetical protein MTH538 from Methanobacterium thermoautotrophicum. Cort, J.R., Yee, A., Edwards, A.M., Arrowsmith, C.H., Kennedy, M.A. J. Mol. Biol. (2000) [Pubmed]
  32. Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases. Lee, B.I., Chang, C., Cho, S.J., Eom, S.H., Kim, K.K., Yu, Y.G., Suh, S.W. J. Mol. Biol. (2001) [Pubmed]
  33. Biochemical activities of the BOB1 mutant in Methanobacterium thermoautotrophicum MCM. Fletcher, R.J., Chen, X.S. Biochemistry (2006) [Pubmed]
  34. Component A2 of the methylcoenzyme M methylreductase system from Methanobacterium thermoautotrophicum. Rouvière, P.E., Escalante-Semerena, J.C., Wolfe, R.S. J. Bacteriol. (1985) [Pubmed]
  35. Purification, characterization, and molecular cloning of S-adenosyl-L-methionine: uroporphyrinogen III methyltransferase from Methanobacterium ivanovii. Blanche, F., Robin, C., Couder, M., Faucher, D., Cauchois, L., Cameron, B., Crouzet, J. J. Bacteriol. (1991) [Pubmed]
  36. Evidence for formation of superoxide and formate radicals in Methanobacterium formicicum. Barber, M.J., Rosen, G.M., Siegel, L.M., Rauckman, E.J. J. Bacteriol. (1983) [Pubmed]
  37. Purification of the copper response extracellular proteins secreted by the copper-resistant methanogen Methanobacterium bryantii BKYH and cloning, sequencing, and transcription of the gene encoding these proteins. Kim, B.K., Pihl, T.D., Reeve, J.N., Daniels, L. J. Bacteriol. (1995) [Pubmed]
  38. Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A., Harada, H. Int. J. Syst. Evol. Microbiol. (2000) [Pubmed]
WikiGenes - Universities