The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Methanosarcina


High impact information on Methanosarcina


Chemical compound and disease context of Methanosarcina

  • We report here the first biochemical characterization of an archaeal GlnK protein from the diazotrophic methanogenic archaeon Methanosarcina mazei strain Gö1 and show that M. mazei GlnK1 is able to functionally complement an Escherichia coli glnK mutant for growth on arginine [9].
  • Isf (iron-sulfur flavoprotein) from Methanosarcina thermophila has been produced in Escherichia coli as a dimer containing two 4Fe-4S clusters and two FMN (flavin mononucleotide) cofactors [10].

Biological context of Methanosarcina


Anatomical context of Methanosarcina


Associations of Methanosarcina with chemical compounds


Gene context of Methanosarcina


Analytical, diagnostic and therapeutic context of Methanosarcina


  1. Defined subcomplexes of the A1 ATPase from the archaeon Methanosarcina mazei Gö1: biochemical properties and redox regulation. Lemker, T., Grüber, G., Schmid, R., Müller, V. FEBS Lett. (2003) [Pubmed]
  2. The cobZ gene of Methanosarcina mazei Go1 encodes the nonorthologous replacement of the alpha-ribazole-5'-phosphate phosphatase (CobC) enzyme of Salmonella enterica. Zayas, C.L., Woodson, J.D., Escalante-Semerena, J.C. J. Bacteriol. (2006) [Pubmed]
  3. Energetics of growth of a defined mixed culture of Desulfovibrio vulgaris and Methanosarcina barkeri: maintenance energy coefficient of the sulfate-reducing organism in the absence and presence of its partner. Traore, A.S., Gaudin, C., Hatchikian, C.E., Le Gall, J., Belaich, J.P. J. Bacteriol. (1983) [Pubmed]
  4. Performance of trickle-bed bioreactors for converting synthesis gas to methane. Kimmel, D.E., Klasson, K.T., Clausen, E.C., Gaddy, J.L. Appl. Biochem. Biotechnol. (1991) [Pubmed]
  5. Role of vitamin B12 in methyl transfer for methane biosynthesis by Methanosarcina barkeri. Wood, J.M., Moura, I., Moura, J.J., Santos, M.H., Xavier, A.V., LeGall, J., Scandellari, M. Science (1982) [Pubmed]
  6. Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria. Tornabene, T.G., Langworthy, T.A. Science (1979) [Pubmed]
  7. Stress genes and proteins in the archaea. Macario, A.J., Lange, M., Ahring, B.K., De Macario, E.C. Microbiol. Mol. Biol. Rev. (1999) [Pubmed]
  8. Activation of the pyrrolysine suppressor tRNA requires formation of a ternary complex with class I and class II lysyl-tRNA synthetases. Polycarpo, C., Ambrogelly, A., Ruan, B., Tumbula-Hansen, D., Ataide, S.F., Ishitani, R., Yokoyama, S., Nureki, O., Ibba, M., Söll, D. Mol. Cell (2003) [Pubmed]
  9. Characterization of GlnK1 from Methanosarcina mazei strain Gö1: complementation of an Escherichia coli glnK mutant strain by GlnK1. Ehlers, C., Grabbe, R., Veit, K., Schmitz, R.A. J. Bacteriol. (2002) [Pubmed]
  10. Site-specific mutational analysis of a novel cysteine motif proposed to ligate the 4Fe-4S cluster in the iron-sulfur flavoprotein of the thermophilic methanoarchaeon Methanosarcina thermophila. Leartsakulpanich, U., Antonkine, M.L., Ferry, J.G. J. Bacteriol. (2000) [Pubmed]
  11. Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway. Welander, P.V., Metcalf, W.W. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  12. Structural and kinetic analyses of arginine residues in the active site of the acetate kinase from Methanosarcina thermophila. Gorrell, A., Lawrence, S.H., Ferry, J.G. J. Biol. Chem. (2005) [Pubmed]
  13. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. Terlesky, K.C., Ferry, J.G. J. Biol. Chem. (1988) [Pubmed]
  14. Amino acid sequence of the alpha and beta subunits of Methanosarcina barkeri ATPase deduced from cloned genes. Similarity to subunits of eukaryotic vacuolar and F0F1-ATPases. Inatomi, K., Eya, S., Maeda, M., Futai, M. J. Biol. Chem. (1989) [Pubmed]
  15. Nucleotide sequence of the methyl coenzyme M reductase gene cluster from Methanosarcina barkeri. Bokranz, M., Klein, A. Nucleic Acids Res. (1987) [Pubmed]
  16. The transmembrane electrochemical gradient of Na+ as driving force for methanol oxidation in Methanosarcina barkeri. Müller, V., Blaut, M., Gottschalk, G. Eur. J. Biochem. (1988) [Pubmed]
  17. Effects of various environmental conditions on the transformation of chlorinated solvents by Methanosarcina thermophila cell exudates. Baeseman, J.L., Novak, P.J. Biotechnol. Bioeng. (2001) [Pubmed]
  18. Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Kandler, O., Hippe, H. Arch. Microbiol. (1977) [Pubmed]
  19. Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA. Abbanat, D.R., Ferry, J.G. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  20. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Rother, M., Metcalf, W.W. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  21. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Hippe, H., Caspari, D., Fiebig, K., Gottschalk, G. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  22. A domain for editing by an archaebacterial tRNA synthetase. Beebe, K., Merriman, E., Ribas De Pouplana, L., Schimmel, P. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  23. Bicarbonate as a proton donor in catalysis by Zn(II)- and Co(II)-containing carbonic anhydrases. Tu, C., Tripp, B.C., Ferry, J.G., Silverman, D.N. J. Am. Chem. Soc. (2001) [Pubmed]
  24. Unique mechanistic features of post-translational regulation of glutamine synthetase activity in Methanosarcina mazei strain Gö1 in response to nitrogen availability. Ehlers, C., Weidenbach, K., Veit, K., Forchhammer, K., Schmitz, R.A. Mol. Microbiol. (2005) [Pubmed]
  25. Identification of a grpE heat-shock gene homolog in the archaeon Methanosarcina mazei. Conway de Macario, E., Dugan, C.B., Macario, A.J. J. Mol. Biol. (1994) [Pubmed]
  26. Crystal structure of F65A/Y131C-methylimidazole carbonic anhydrase V reveals architectural features of an engineered proton shuttle. Jude, K.M., Wright, S.K., Tu, C., Silverman, D.N., Viola, R.E., Christianson, D.W. Biochemistry (2002) [Pubmed]
  27. Molecular, genetic, and biochemical characterization of the serC gene of Methanosarcina barkeri Fusaro. Metcalf, W.W., Zhang, J.K., Shi, X., Wolfe, R.S. J. Bacteriol. (1996) [Pubmed]
  28. The role of histidines in the acetate kinase from Methanosarcina thermophila. Ingram-Smith, C., Barber, R.D., Ferry, J.G. J. Biol. Chem. (2000) [Pubmed]
  29. Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grown Methanosarcina thermophila. Terlesky, K.C., Nelson, M.J., Ferry, J.G. J. Bacteriol. (1986) [Pubmed]
  30. Immunocytochemical localization of the coenzyme F420-reducing hydrogenase in Methanosarcina barkeri Fusaro. Lünsdorf, H., Niedrig, M., Fiebig, K. J. Bacteriol. (1991) [Pubmed]
  31. Expression, purification, crystallization and preliminary X-ray analysis of phosphotransacetylase from Methanosarcina thermophila. Iyer, P.P., Lawrence, S.H., Yennawar, H.P., Ferry, J.G. Acta Crystallogr. D Biol. Crystallogr. (2003) [Pubmed]
  32. Sodium ion translocation by N5-methyltetrahydromethanopterin: coenzyme M methyltransferase from Methanosarcina mazei Gö1 reconstituted in ether lipid liposomes. Lienard, T., Becher, B., Marschall, M., Bowien, S., Gottschalk, G. Eur. J. Biochem. (1996) [Pubmed]
WikiGenes - Universities