The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein.

The locus glc (min 64.5), associated with the glycolate utilization trait in Escherichia coli, is known to contain glcB, encoding malate synthase G, and the gene(s) needed for glycolate oxidase activity. Subcloning, sequencing, insertion mutagenesis, and expression studies showed five additional genes: glcC and in the other direction glcD, glcE, glcF, and glcG followed by glcB. The gene glcC may encode the glc regulator protein. Consistently a chloramphenicol acetyltransferase insertion mutation abolished both glycolate oxidase and malate synthase G activities. The proteins encoded from glcD and glcE displayed similarity to several flavoenzymes, the one from glcF was found to be similar to iron-sulfur proteins, and that from glcG had no significant similarity to any group of proteins. The insertional mutation by a chloramphenicol acetyltransferase cassette in either glcD, glcE, or glcF abolished glycolate oxidase activity, indicating that presumably these proteins are subunits of this enzyme. No effect on glycolate metabolism was detected by insertional mutation in glcG. Northern (RNA) blot experiments showed constitutive expression of glcC but induced expression for the structural genes and provided no evidence for a single polycistronic transcript.[1]

References

 
WikiGenes - Universities