The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Bradyrhizobium japonicum porphobilinogen synthase uses two Mg(II) and monovalent cations.

Bradyrhizobium japonicum porphobilinogen synthase (B. japonicum PBGS) has been purified and characterized from an overexpression system in an Escherichia coli host (Chauhan, S., and O'Brian, M. R. (1995) J. Biol. Chem. 270, 19823-19827). B. japonicum PBGS defines a new class of PBGS protein, type IV (classified by metal ion content), which utilizes a catalytic MgA present at a stoichiometry of 4/octamer, an allosteric MgC present at a stoichiometry of 8/octamer, and a monovalent metal ion, K+. However, the divalent MgB or ZnB present in some other PBGS is not present in B. japonicum PBGS. Under optimal conditions, the Kd for MgA is <0.2 microM, and the Kd for MgC is about 40 microM. The response of B. japonicum PBGS activity to monovalent and divalent cations is mutually dependent and varies dramatically with pH. B. japonicum PBGS is also found to undergo a dynamic equilibrium between active multimeric species and inactive monomers under assay conditions, a kinetic characteristic not reported for other PBGSs. B. japonicum PBGS is the first PBGS that has been rigorously demonstrated to lack a catalytic ZnA. However, consistent with prior predictions, B. japonicum PBGS can bind Zn(II) (presumably as ZnA) at a stoichiometry of 4/octamer with a Kd of 200 microM; but this high concentration is outside a physiologically significant range.[1]

References

  1. Bradyrhizobium japonicum porphobilinogen synthase uses two Mg(II) and monovalent cations. Petrovich, R.M., Litwin, S., Jaffe, E.K. J. Biol. Chem. (1996) [Pubmed]
 
WikiGenes - Universities