The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bradyrhizobium

  • The nodZ gene, which is present in various soil bacteria such as Bradyrhizobium japonicum, Azorhizobium caulinodans, and Rhizobium loti, is involved in the addition of a fucosyl residue to the reducing N-acetylglucosamine residue of lipochitin oligosaccharide (LCO) signal molecules [1].
  • The product of nhlF, NhlF, shows a significant sequence similarity with those of hoxN from Alcaligenes eutrophus, hupN from Bradyrhizobium japonicum, nixA from Helicobacter pylori, and ureH from Bacillus sp., which are considered to be involved in nickel uptake into these cells [2].
  • The genes for a new type of a haem-copper cytochrome oxidase were cloned from Rhodobacter capsulatus strain 37b4, using the Bradyrhizobium japonicum fixNOQP gene region as a hybridizing probe [3].
  • Placement of the UAS from the Bradyrhizobium japonicum nifH gene in front of the spacer (DNA region between URS and promoter) plus promoter from fdhF renders fdhF expression activatable by the Klebsiella pneumoniae NIFA protein, both under aerobic and anaerobic conditions [4].
  • By expressing CcmE (CycJ) from Bradyrhizobium japonicum in E. coli we demonstrated that heme is bound covalently to this protein at a strictly conserved histidine residue [5].

High impact information on Bradyrhizobium

  • Two adjacent genes in Bradyrhizobium japonicum, fbcF and fbcH, encode the Rieske iron sulfur protein and cytochromes b and c1, characteristic constituents of the respiratory complex III [6].
  • Here we report the first structure of an AS family enzyme provided by the crystal structure of malonamidase E2 from Bradyrhizobium japonicum [7].
  • These results indicate that we have purified a newly identified carbohydrate-binding protein from Bradyrhizobium japonicum, that can exquisitely distinguish galactose from its derivatives at the C-2 position [8].
  • Extracts of Bradyrhizobium japonicum were fractionated on Sepharose columns covalently derivatized with lactose [8].
  • In the slow-growing soybean symbiont, Bradyrhizobium japonicum (strain 110), a nifA-like regulatory gene was located immediately upstream of the previously mapped fixA gene [9].

Chemical compound and disease context of Bradyrhizobium

  • Bradyrhizobium japonicum is the root nodule endosymbiont of soybean (Glycine max), mung bean (Vigna radiata), cowpea (Vigna unguiculata), and Siratro (Macroptilium atropurpureum) [10].
  • Bradyrhizobium japonicum rhizobitoxine genes and putative enzyme functions: expression requires a translational frameshift [11].
  • Bradyrhizobium japonicum hypB encodes a protein containing an extremely histidine-rich region (24 histidine residues within a 39-amino-acid stretch) and guanine nucleotide-binding domains [12].
  • A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum [13].
  • Lipopolysaccharide (LPS) purified from Bradyrhizobium japonicum R110d, a Gram-negative bacterium that normally infects and induces nodulation in soybean roots in vivo, inhibits intercellular communication between the soybean cells in a dose-dependent manner [14].

Biological context of Bradyrhizobium


Anatomical context of Bradyrhizobium


Gene context of Bradyrhizobium


Analytical, diagnostic and therapeutic context of Bradyrhizobium


  1. Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin. Quinto, C., Wijfjes, A.H., Bloemberg, G.V., Blok-Tip, L., López-Lara, I.M., Lugtenberg, B.J., Thomas-Oates, J.E., Spaink, H.P. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  2. A novel transporter involved in cobalt uptake. Komeda, H., Kobayashi, M., Shimizu, S. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  3. The ccoNOQP gene cluster codes for a cb-type cytochrome oxidase that functions in aerobic respiration of Rhodobacter capsulatus. Thöny-Meyer, L., Beck, C., Preisig, O., Hennecke, H. Mol. Microbiol. (1994) [Pubmed]
  4. Construction of chimaeric promoter regions by exchange of the upstream regulatory sequences from fdhF and nif genes. Birkmann, A., Hennecke, H., Böck, A. Mol. Microbiol. (1989) [Pubmed]
  5. Interspecies complementation of Escherichia coli ccm mutants: CcmE (CycJ) from Bradyrhizobium japonicum acts as a heme chaperone during cytochrome c maturation. Schulz, H., Thöny-Meyer, L. J. Bacteriol. (2000) [Pubmed]
  6. An unusual gene cluster for the cytochrome bc1 complex in Bradyrhizobium japonicum and its requirement for effective root nodule symbiosis. Thöny-Meyer, L., Stax, D., Hennecke, H. Cell (1989) [Pubmed]
  7. Structure of malonamidase E2 reveals a novel Ser-cisSer-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature. Shin, S., Lee, T.H., Ha, N.C., Koo, H.M., Kim, S.Y., Lee, H.S., Kim, Y.S., Oh, B.H. EMBO J. (2002) [Pubmed]
  8. Carbohydrate binding activities of Bradyrhizobium japonicum. II. Isolation and characterization of a galactose-specific lectin. Ho, S.C., Schindler, M., Wang, J.L. J. Cell Biol. (1990) [Pubmed]
  9. The pleiotropic nature of symbiotic regulatory mutants: Bradyrhizobium japonicum nifA gene is involved in control of nif gene expression and formation of determinate symbiosis. Fischer, H.M., Alvarez-Morales, A., Hennecke, H. EMBO J. (1986) [Pubmed]
  10. Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum. Göttfert, M., Grob, P., Hennecke, H. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  11. Bradyrhizobium japonicum rhizobitoxine genes and putative enzyme functions: expression requires a translational frameshift. Ruan, X., Zhang, C., Peters, N.K. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  12. HypB protein of Bradyrhizobium japonicum is a metal-binding GTPase capable of binding 18 divalent nickel ions per dimer. Fu, C., Olson, J.W., Maier, R.J. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  13. A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum. Sanjuan, J., Carlson, R.W., Spaink, H.P., Bhat, U.R., Barbour, W.M., Glushka, J., Stacey, G. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  14. O-antigen from Bradyrhizobium japonicum lipopolysaccharide inhibits intercellular (symplast) communication between soybean (Glycine max) cells. Gharyal, P.K., Ho, S.C., Wang, J.L., Schindler, M. J. Biol. Chem. (1989) [Pubmed]
  15. The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans. Sadowsky, M.J., Cregan, P.B., Gottfert, M., Sharma, A., Gerhold, D., Rodriguez-Quinones, F., Keyser, H.H., Hennecke, H., Stacey, G. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  16. Nucleotide sequence of a gene for indole-3-acetamide hydrolase from Bradyrhizobium japonicum. Sekine, M., Watanabe, K., Syono, K. Nucleic Acids Res. (1989) [Pubmed]
  17. The Bradyrhizobium japonicum fixBCX operon: identification of fixX and of a 5' mRNA region affecting the level of the fixBCX transcript. Gubler, M., Zürcher, T., Hennecke, H. Mol. Microbiol. (1989) [Pubmed]
  18. Identification of nodSUIJ genes in Nod locus 1 of Azorhizobium caulinodans: evidence that nodS encodes a methyltransferase involved in Nod factor modification. Geelen, D., Mergaert, P., Geremia, R.A., Goormachtig, S., Van Montagu, M., Holsters, M. Mol. Microbiol. (1993) [Pubmed]
  19. Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Minder, A.C., de Rudder, K.E., Narberhaus, F., Fischer, H.M., Hennecke, H., Geiger, O. Mol. Microbiol. (2001) [Pubmed]
  20. Dual intracellular localization and targeting of aminoimidazole ribonucleotide synthetase in cowpea. Goggin, D.E., Lipscombe, R., Fedorova, E., Millar, A.H., Mann, A., Atkins, C.A., Smith, P.M. Plant Physiol. (2003) [Pubmed]
  21. Histidine 131, not histidine 43, of the Bradyrhizobium japonicum FixN protein is exposed towards the periplasm and essential for the function of the cbb3-type cytochrome oxidase. Zufferey, R., Thöny-Meyer, L., Hennecke, H. FEBS Lett. (1996) [Pubmed]
  22. Bradyrhizobium japonicum delta-aminolevulinic acid dehydratase is essential for symbiosis with soybean and contains a novel metal-binding domain. Chauhan, S., O'Brian, M.R. J. Bacteriol. (1993) [Pubmed]
  23. Bradyrhizobium japonicum glnB, a putative nitrogen-regulatory gene, is regulated by NtrC at tandem promoters. Martin, G.B., Thomashow, M.F., Chelm, B.K. J. Bacteriol. (1989) [Pubmed]
  24. Rhizobium meliloti 1021 has three differentially regulated loci involved in glutamine biosynthesis, none of which is essential for symbiotic nitrogen fixation. de Bruijn, F.J., Rossbach, S., Schneider, M., Ratet, P., Messmer, S., Szeto, W.W., Ausubel, F.M., Schell, J. J. Bacteriol. (1989) [Pubmed]
  25. Physical organization of the Bradyrhizobium japonicum nitrogenase gene region. Adams, T.H., McClung, C.R., Chelm, B.K. J. Bacteriol. (1984) [Pubmed]
  26. Characterization of cytochromes c550 and c555 from Bradyrhizobium japonicum: cloning, mutagenesis, and sequencing of the c555 gene (cycC). Tully, R.E., Sadowsky, M.J., Keister, D.L. J. Bacteriol. (1991) [Pubmed]
  27. How replacements of the 12 conserved histidines of subunit I affect assembly, cofactor binding, and enzymatic activity of the Bradyrhizobium japonicum cbb3-type oxidase. Zufferey, R., Arslan, E., Thöny-Meyer, L., Hennecke, H. J. Biol. Chem. (1998) [Pubmed]
  28. Molecular cloning of a gene for indole-3-acetamide hydrolase from Bradyrhizobium japonicum. Sekine, M., Watanabe, K., Syono, K. J. Bacteriol. (1989) [Pubmed]
  29. Squalene-hopene cyclase from Bradyrhizobium japonicum: cloning, expression, sequence analysis and comparison to other triterpenoid cyclases. Perzl, M., Müller, P., Poralla, K., Kannenberg, E.L. Microbiology (Reading, Engl.) (1997) [Pubmed]
  30. Cloning, purification, crystallization and preliminary crystallographic studies of Bradyrhizobium fucosyltransferase NodZ. Brzezinski, K., Rogozinski, B., Stepkowski, T., Bujacz, G., Jaskolski, M. Acta Crystallogr. D Biol. Crystallogr. (2004) [Pubmed]
WikiGenes - Universities