The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

Mu opioid receptor-like sequences are present throughout vertebrate evolution.

The sequence of the mu opioid receptor is highly conserved among human, rat, and mouse. In order to gain insights into the evolution of the mu opioid receptor, polymerase chain reaction (PCR) was used to screen genomic DNA from a number of different species using degenerate oligonucleotides which recognize a highly conserved region. DNA was assayed from representative species of both the protostome and deuterostome branches of the metazoan phylogenetic tree. Mu opioid receptor-like sequences were found in all vertebrate species that were analyzed. These species included bovine, chicken, bullfrog, striped bass, thresher shark, and Pacific hagfish. However, no mu opioid receptor-like sequences were detected from protostomes or from any invertebrates. The PCR results demonstrate that the region of the mu opioid receptor gene between the first intracellular loop and the third transmembrane domain (TM3) has been highly conserved during evolution and that mu opioid receptor-like sequences are present in the earliest stages of vertebrate evolution. Additional opioid receptor-like sequence was obtained from mRNA isolated from Pacific hagfish brain using rapid amplification of cDNA ends (RACE). The sequence of the Pacific hagfish was most homologous with the human mu opioid receptor (72% at the amino acid level between intracellular loop 1 and transmembrane domain 6) although over the same region high homology was also observed with the delta opioid receptor (69%), the kappa receptor (63%), and opioid receptor-like ( ORL1) (59%). The hagfish sequence showed low conservation with the mammalian opioid receptors in the first and second extracellular loops but high conservation in the transmembrane and intracellular domains.[1]

References

  1. Mu opioid receptor-like sequences are present throughout vertebrate evolution. Li, X., Keith, D.E., Evans, C.J. J. Mol. Evol. (1996) [Pubmed]
 
WikiGenes - Universities