The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mutation of the axonal transport motor kinesin enhances paralytic and suppresses Shaker in Drosophila.

To investigate the possibility that kinesin transports vesicles bearing proteins essential for ion channel activity, the effects of kinesin (Khc) and ion channel mutations were compared in Drosophila using established tests. Our results show that Khc mutations produce defects and genetic interactions characteristic of paralytic (para) and maleless (mle) mutations that cause reduced expression or function of the alpha-subunit of voltage-gated sodium channels. Like para and mle mutations, Khc mutations cause temperature-sensitive (TS) paralysis. When combined with para or mle mutations, Khe mutations cause synthetic lethality and a synergistic enhancement of TS-paralysis. Furthermore, Khc: mutations suppress Shaker and ether-a-go-go mutations that disrupt potassium channel activity. In light of previous physiological tests that show that Khc mutations inhibit compound action potential propagation in segmental nerves, these data indicate that kinesin activity is required for normal inward sodium currents during neuronal action potentials. Tests for phenotypic similarities and genetic interactions between kinesin and sodium/potassium ATPse mutations suggest that impaired kinesin function does not affect the driving force on sodium ions. We hypothesize that a loss of kinesin function inhibits the anterograde axonal transport of vesicles bearing sodium channels.[1]

References

 
WikiGenes - Universities