The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inducers of erythroleukemic differentiation cause messenger RNAs that lack poly(A)-binding protein to accumulate in translationally inactive, salt-labile 80 S ribosomal complexes.

Translation has an established role in the regulation of cell growth. Posttranslational modification of translation initiation and elongation factors or regulation of mRNA polyadenylation represent common means of regulating translation in response to mitogenic or developmental signals. Induced differentiation of Friend virus-transformed erythroleukemia cells is accompanied by a rapid decrease in the translation rate of these cells. Although inducers do not alter initiation factor modifications, characterization of their effect on mRNA translation provides evidence that this is mediated by the poly(A)-binding protein (PABP). Inducer exposure results in an increase in the amount of mRNA that sediments at 80 S and a decrease in the amount in polysomes. Although these 80 S ribosomes have characteristics previously attributed to "vacant ribosomal couples," including lability in 500 mM KCl and an inability to incorporate amino acids into protein, we provide evidence that these 80 S complexes are not vacant but contain mRNA that is stably bound to the 40 S subunit, whereas the 60 S subunit is dissociated from the complex by high salt. The absence of eukaryotic initiation factor 2 from these complexes suggests that translation has proceeded through subunit joining. Immunoblotting demonstrates that the mRNAs in these 80 S ribosomal complexes do not contain bound PABP and that this protein is found to be almost exclusively associated with translating polysomes. These data suggest that the PABP plays a role in the accumulation of these 80 S ribosomal.mRNA complexes and may facilitate the formation of translationally active salt-stable ribosomes.[1]

References

 
WikiGenes - Universities