The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Binding of an N-terminal rhodanese peptide to DnaJ and to ribosomes.

A peptide corresponding to the N-terminal 17 amino acids of bovine rhodanese was fluorescently labeled with a coumarin derivative at its primary amino group(s) and then purified by high performance liquid chromatography. This peptide interacted with the molecular chaperone DnaJ in the absence of other chaperones and ATP. In the presence of ATP, the molecular chaperone DnaK bound to the DnaJ-peptide complex, but not to the peptide alone. The chaperone GrpE appeared to cause the release of the peptide bound to the ternary complex in the presence of ATP but not in the presence of ADP. This nucleotide apparently stabilized the complex. The peptide also bound to salt-washed Escherichia coli 70 S ribosomes, specifically to 50 S ribosomal subunits, not to 30 S subunits. DnaJ plus DnaK interacted with the peptide on the ribosome. GrpE caused dissociation of the peptide from the ribosome; ATP was required for this reaction. It was inhibited by ADP. A comparable series of chaperone-mediated reactions is assumed to occur with the N-terminal segment of the nascent polypeptide to facilitate its folding on ribosomes.[1]


  1. Binding of an N-terminal rhodanese peptide to DnaJ and to ribosomes. Kudlicki, W., Odom, O.W., Kramer, G., Hardesty, B. J. Biol. Chem. (1996) [Pubmed]
WikiGenes - Universities