Gene Review:
TST - thiosulfate sulfurtransferase (rhodanese)
Bos taurus
- Expression of cloned bovine adrenal rhodanese. Miller, D.M., Delgado, R., Chirgwin, J.M., Hardies, S.C., Horowitz, P.M. J. Biol. Chem. (1991)
- Effect of live weight gain of steers during winter grazing: II. Visceral organ mass, cellularity, and oxygen consumption. Hersom, M.J., Krehbiel, C.R., Horn, G.W. J. Anim. Sci. (2004)
- Isolation and characterization of a sulfur-regulated gene encoding a periplasmically localized protein with sequence similarity to rhodanese. Laudenbach, D.E., Ehrhardt, D., Green, L., Grossman, A. J. Bacteriol. (1991)
- Crystallization and preliminary crystallographic investigations of rhodanese from Azotobacter vinelandii. Bordo, D., Colnaghi, R., Deriu, D., Carpen, A., Storici, P., Pagani, S., Bolognesi, M. Acta Crystallogr. D Biol. Crystallogr. (1999)
- Modification and inactivation of rhodanese by 2,4,6-trinitrobenzenesulphonic acid. Malliopoulou, T.B., Rakitzis, E.T. J. Enzym. Inhib. (1988)
- The covalent and tertiary structure of bovine liver rhodanese. Ploegman, J.H., Drent, G., Kalk, K.H., Hol, W.G., Heinrikson, R.L., Keim, P., Weng, L., Russell, J. Nature (1978)
- Formation of a selenium-substituted rhodanese by reaction with selenite and glutathione: possible role of a protein perselenide in a selenium delivery system. Ogasawara, Y., Lacourciere, G., Stadtman, T.C. Proc. Natl. Acad. Sci. U.S.A. (2001)
- Different conformations of nascent peptides on ribosomes. Tsalkova, T., Odom, O.W., Kramer, G., Hardesty, B. J. Mol. Biol. (1998)
- Enzyme-mediated sulfide production for the reconstitution of [2Fe-2S] clusters into apo-biotin synthase of Escherichia coli. Sulfide transfer from cysteine to biotin. Bui, B.T., Escalettes, F., Chottard, G., Florentin, D., Marquet, A. Eur. J. Biochem. (2000)
- Enhancement of serine-sensitivity by a gene encoding rhodanese-like protein in Escherichia coli. Hama, H., Kayahara, T., Ogawa, W., Tsuda, M., Tsuchiya, T. J. Biochem. (1994)
- Escherichia coli GlpE is a prototype sulfurtransferase for the single-domain rhodanese homology superfamily. Spallarossa, A., Donahue, J.L., Larson, T.J., Bolognesi, M., Bordo, D. Structure (Camb.) (2001)
- Active site structural features for chemically modified forms of rhodanese. Gliubich, F., Gazerro, M., Zanotti, G., Delbono, S., Bombieri, G., Berni, R. J. Biol. Chem. (1996)
- The covalent structure of bovine liver rhodanese. Isolation and partial structural analysis of cyanogen bromide fragements and the complete sequence of the enzyme. Russell, J., Weng, L., Keim, P.S., Heinrikson, R.L. J. Biol. Chem. (1978)
- Bovine mitochondrial rhodanese is a phosphoprotein. Ogata, K., Dai, X., Volini, M. J. Biol. Chem. (1989)
- Micelle-assisted protein folding. Denatured rhodanese binding to cardiolipin-containing lauryl maltoside micelles results in slower refolding kinetics but greater enzyme reactivation. Zardeneta, G., Horowitz, P.M. J. Biol. Chem. (1992)
- Activation and release of enzymatically inactive, full-length rhodanese that is bound to ribosomes as peptidyl-tRNA. Kudlicki, W., Odom, O.W., Kramer, G., Hardesty, B. J. Biol. Chem. (1994)
- Analysis of the perturbation of phospholipid model membranes by rhodanese and its presequence. Zardeneta, G., Horowitz, P.M. J. Biol. Chem. (1992)
- Mitochondrial rhodanese: membrane-bound and complexed activity. Ogata, K., Volini, M. J. Biol. Chem. (1990)
- Active rhodanese lacking nonessential sulfhydryl groups contains an unstable C-terminal domain and can be bound, inactivated, and reactivated by GroEL. Ybarra, J., Bhattacharyya, A.M., Panda, M., Horowitz, P.M. J. Biol. Chem. (2003)
- Active site cysteinyl and arginyl residues of rhodanese. A novel formation of disulfide bonds in the active site promoted by phenylglyoxal. Weng, L., Heinrikson, R.L., Westley, J. J. Biol. Chem. (1978)
- Alteration of the quaternary structure of cpn60 modulates chaperonin-assisted folding. Implications for the mechanism of chaperonin action. Mendoza, J.A., Demeler, B., Horowitz, P.M. J. Biol. Chem. (1994)
- Interaction of rhodanese with intermediates of oxygen reduction. Cannella, C., Berni, R. FEBS Lett. (1983)
- Reduced thioredoxin as a sulfur-acceptor substrate for rhodanese. Nandi, D.L., Westley, J. Int. J. Biochem. Cell Biol. (1998)
- Binding of defined regions of a polypeptide to GroEL and its implications for chaperonin-mediated protein folding. Hlodan, R., Tempst, P., Hartl, F.U. Nat. Struct. Biol. (1995)
- Spectral differences between rhodanese catalytic intermediates unrelated to enzyme conformation. Chow, S.F., Horowitz, P.M. J. Biol. Chem. (1985)
- NH2-terminal sequence truncation decreases the stability of bovine rhodanese, minimally perturbs its crystal structure, and enhances interaction with GroEL under native conditions. Trevino, R.J., Gliubich, F., Berni, R., Cianci, M., Chirgwin, J.M., Zanotti, G., Horowitz, P.M. J. Biol. Chem. (1999)
- Reversible thermal denaturation of immobilized rhodanese. Horowitz, P., Bowman, S. J. Biol. Chem. (1987)