The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

ECs0015  -  molecular chaperone DnaJ

Escherichia coli O157:H7 str. Sakai

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ECs0015

 

High impact information on ECs0015

  • Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding [6].
  • A homologue of the bacterial heat-shock gene DnaJ that alters protein sorting in yeast [1].
  • DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32 [7].
  • A function for the QKRAA amino acid motif: mediating binding of DnaJ to DnaK. Implications for the association of rheumatoid arthritis with HLA-DR4 [8].
  • The binding motif of DnaJ consists of a hydrophobic core of approximately eight residues enriched for aromatic and large aliphatic hydrophobic residues and arginine [9].
 

Chemical compound and disease context of ECs0015

  • In this study, we address the function of the conserved glycine- and phenyalanine-rich (G/F-rich) region of the Escherichia coli DnaJ in the DnaK chaperone cycle [10].
  • Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ [11].
  • NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone [12].
  • The recombinant N-terminal 107-amino acid polypeptide fragment 2-108 of the DnaJ molecular chaperone of Escherichia coli, which contains the J-domain (residues 2 to 76) and the Gly/Phe-rich region (residues 77 to 108), was uniformly labeled with nitrogen-15 and carbon-13 [12].
  • The role of two chaperone proteins, DnaK and the cooperating factor DnaJ, in Escherichia coli antibiotic susceptibility to three antibiotics (a beta-lactam, chloramphenicol, tetracycline) has been studied [13].
 

Biological context of ECs0015

  • DnaJ, through rapid association with sigma32 and stimulation of hydrolysis of DnaK-bound ATP, mediates efficient binding of DnaK to sigma32 in the presence of ATP, resulting in DnaK-DnaJ-sigma32 complexes containing ADP [14].
  • Escherichia coli chaperones DnaJ, DnaK and GrpE increase P1 plasmid initiator binding to the origin by promoting initiator folding [15].
  • These data indicate that reversible inhibition of sigma32 activity through transient association of DnaK and DnaJ is a central regulatory element of the heat shock response [14].
  • Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone [9].
  • We have obtained a cDNA clone from the higher plant Atriplex nummularia that encodes a 46.6-kD polypeptide (ANJ1) with an overall 35.2% amino acid sequence identity with the E. coli DnaJ [16].
 

Anatomical context of ECs0015

 

Associations of ECs0015 with chemical compounds

  • As demonstrated by atomic absorption and extended X-ray absorption fine structure spectroscopy (EXAFS), the 90 amino acid cysteine-rich region of DnaJ contains two Zn atoms tetrahedrally coordinated to four cysteine residues, resembling their arrangement in the C4 Zn binding domains of certain DNA binding proteins [22].
  • This DnaJ-sigma 32-DnaK complex has been seen under different conditions, including glycerol gradient sedimentation and co-immunoprecipitation [23].
  • As judged by proteolysis sensitivity, DnaJ is composed of three separate regions, a 9-kDa NH2-terminal domain, a 30-kDa COOH-terminal domain, and a protease-sensitive glycine- and phenylalanine-rich (G/F-rich) segment of 30 amino acids that serves as a flexible linker between the two domains [24].
  • Like all J homologues, it shares homology with the highly conserved NH2-terminal "J-domain" of DnaJ [25].
  • Specificity of DnaK for arginine/lysine and effect of DnaJ on the amino acid specificity of DnaK [26].
 

Analytical, diagnostic and therapeutic context of ECs0015

  • Supporting this view, infrared and circular dichroism studies show that the DnaJ secondary structure is largely unaffected by the release of Zn(II) [27].
  • Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy [28].
  • Zinc (15)N-(1)H HSQC titrations indicate that the fold of the isolated DnaJ CR domain is zinc-dependent and that one zinc module folds before the other [11].
  • An enzyme-linked immunosorbent assay showed that IgG titers to the N-terminal conservative region of the DnaJ are significantly higher in RA patients compared with the healthy controls (p < 0.05) [29].
  • The C. burnetii dnaJ gene was expressed in E. coli and identified by Western blot analysis using polyclonal antibodies raised against purified E. coli DnaJ protein [30].

References

  1. A homologue of the bacterial heat-shock gene DnaJ that alters protein sorting in yeast. Blumberg, H., Silver, P.A. Nature (1991) [Pubmed]
  2. DnaJ/hsp40 chaperone domain of SV40 large T antigen promotes efficient viral DNA replication. Campbell, K.S., Mullane, K.P., Aksoy, I.A., Stubdal, H., Zalvide, J., Pipas, J.M., Silver, P.A., Roberts, T.M., Schaffhausen, B.S., DeCaprio, J.A. Genes Dev. (1997) [Pubmed]
  3. The T/t common exon of simian virus 40, JC, and BK polyomavirus T antigens can functionally replace the J-domain of the Escherichia coli DnaJ molecular chaperone. Kelley, W.L., Georgopoulos, C. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  4. The human DnaJ protein, hTid-1, enhances binding of a multimer of the herpes simplex virus type 1 UL9 protein to oris, an origin of viral DNA replication. Eom, C.Y., Lehman, I.R. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  5. A novel factor required for the assembly of the DnaK and DnaJ chaperones of Thermus thermophilus. Motohashi, K., Yohda, M., Endo, I., Yoshida, M. J. Biol. Chem. (1996) [Pubmed]
  6. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Langer, T., Lu, C., Echols, H., Flanagan, J., Hayer, M.K., Hartl, F.U. Nature (1992) [Pubmed]
  7. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Straus, D., Walter, W., Gross, C.A. Genes Dev. (1990) [Pubmed]
  8. A function for the QKRAA amino acid motif: mediating binding of DnaJ to DnaK. Implications for the association of rheumatoid arthritis with HLA-DR4. Auger, I., Roudier, J. J. Clin. Invest. (1997) [Pubmed]
  9. Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. Rüdiger, S., Schneider-Mergener, J., Bukau, B. EMBO J. (2001) [Pubmed]
  10. The Role of the DIF Motif of the DnaJ (Hsp40) Co-chaperone in the Regulation of the DnaK (Hsp70) Chaperone Cycle. Cajo, G.C., Horne, B.E., Kelley, W.L., Schwager, F., Georgopoulos, C., Genevaux, P. J. Biol. Chem. (2006) [Pubmed]
  11. Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ. Martinez-Yamout, M., Legge, G.B., Zhang, O., Wright, P.E., Dyson, H.J. J. Mol. Biol. (2000) [Pubmed]
  12. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. Pellecchia, M., Szyperski, T., Wall, D., Georgopoulos, C., Wüthrich, K. J. Mol. Biol. (1996) [Pubmed]
  13. Antibiotic susceptibility of Escherichia coli dnaK and dnaJ mutants. Wolska, K.I., Bugajska, E., Jurkiewicz, D., Kuć, M., Jóźwik, A. Microb. Drug Resist. (2000) [Pubmed]
  14. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. Gamer, J., Multhaup, G., Tomoyasu, T., McCarty, J.S., Rüdiger, S., Schönfeld, H.J., Schirra, C., Bujard, H., Bukau, B. EMBO J. (1996) [Pubmed]
  15. Relaxation of replication control in chaperone-independent initiator mutants of plasmid P1. Mukhopadhyay, G., Sozhamannan, S., Chattoraj, D.K. EMBO J. (1994) [Pubmed]
  16. Expression of an Atriplex nummularia gene encoding a protein homologous to the bacterial molecular chaperone DnaJ. Zhu, J.K., Shi, J., Bressan, R.A., Hasegawa, P.M. Plant Cell (1993) [Pubmed]
  17. A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein. Sadler, I., Chiang, A., Kurihara, T., Rothblatt, J., Way, J., Silver, P. J. Cell Biol. (1989) [Pubmed]
  18. Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides. Hendrick, J.P., Langer, T., Davis, T.A., Hartl, F.U., Wiedmann, M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  19. Role of the J-domain in the cooperation of Hsp40 with Hsp70. Greene, M.K., Maskos, K., Landry, S.J. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  20. Binding of an N-terminal rhodanese peptide to DnaJ and to ribosomes. Kudlicki, W., Odom, O.W., Kramer, G., Hardesty, B. J. Biol. Chem. (1996) [Pubmed]
  21. Identification and characterization of a novel endoplasmic reticulum (ER) DnaJ homologue, which stimulates ATPase activity of BiP in vitro and is induced by ER stress. Shen, Y., Meunier, L., Hendershot, L.M. J. Biol. Chem. (2002) [Pubmed]
  22. A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates. Szabo, A., Korszun, R., Hartl, F.U., Flanagan, J. EMBO J. (1996) [Pubmed]
  23. Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins. Liberek, K., Georgopoulos, C. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  24. A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein. Karzai, A.W., McMacken, R. J. Biol. Chem. (1996) [Pubmed]
  25. A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. Tsai, J., Douglas, M.G. J. Biol. Chem. (1996) [Pubmed]
  26. Specificity of DnaK for arginine/lysine and effect of DnaJ on the amino acid specificity of DnaK. de Crouy-Chanel, A., Kohiyama, M., Richarme, G. J. Biol. Chem. (1996) [Pubmed]
  27. Structure-function analysis of the zinc finger region of the DnaJ molecular chaperone. Banecki, B., Liberek, K., Wall, D., Wawrzynów, A., Georgopoulos, C., Bertoli, E., Tanfani, F., Zylicz, M. J. Biol. Chem. (1996) [Pubmed]
  28. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. Mayer, M.P., Laufen, T., Paal, K., McCarty, J.S., Bukau, B. J. Mol. Biol. (1999) [Pubmed]
  29. Immunodominant region of Actinobacillus actinomycetemcomitans 40-kilodalton heat shock protein in patients with rheumatoid arthritis. Yoshida, A., Nakano, Y., Yamashita, Y., Oho, T., Ito, H., Kondo, M., Ohishi, M., Koga, T. J. Dent. Res. (2001) [Pubmed]
  30. Cloning, sequencing and expression of the dnaJ gene of Coxiella burnetii. Zuber, M., Hoover, T.A., Court, D.L. Gene (1995) [Pubmed]
 
WikiGenes - Universities