The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption.

We have cloned four novel members of the CLC family of chloride channels from Arabidopsis thaliana. The four plant genes are homologous to a recently isolated chloride channel gene from tobacco (CLC-Nt1; Lurin, C., Geelen, D., Barbier-Brygoo, H., Guern, J., and Maurel, C. (1996) Plant Cell 8, 701-711) and are about 30% identical in sequence to the most closely related CLC-6 and CLC-7 putative chloride channels from mammalia. AtCLC transcripts are broadly expressed in the plant. Similarly, antibodies against the AtCLC-d protein detected the protein in all tissues, but predominantly in the silique. AtCLC-a and AtCLC-b are highly homologous to each other ( approximately 87% identity), while being approximately 50% identical to either AtCLC-c or AtCLC-d. None of the four cDNAs elicited chloride currents when expressed in Xenopus oocytes, either singly or in combination. Among these genes, only AtCLC-d could functionally substitute for the single yeast CLC protein, restoring iron-limited growth of a strain disrupted for this gene. Introduction of disease causing mutations, identified in human CLC genes, abolished this capacity. Consistent with a similar function of both proteins, the green fluorescent protein-tagged AtCLC-d protein showed the identical localization pattern as the yeast ScCLC protein. This suggests that in Arabidopsis AtCLC-d functions as an intracellular chloride channel.[1]

References

  1. A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. Hechenberger, M., Schwappach, B., Fischer, W.N., Frommer, W.B., Jentsch, T.J., Steinmeyer, K. J. Biol. Chem. (1996) [Pubmed]
 
WikiGenes - Universities