The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Arabidopsis

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Arabidopsis

 

Psychiatry related information on Arabidopsis

 

High impact information on Arabidopsis

 

Chemical compound and disease context of Arabidopsis

 

Biological context of Arabidopsis

 

Anatomical context of Arabidopsis

 

Associations of Arabidopsis with chemical compounds

  • Here, we show that organ formation in Arabidopsis involves dynamic gradients of the signaling molecule auxin with maxima at the primordia tips [27].
  • Genetic studies in Arabidopsis led to a partial elucidation of the mechanisms of ethylene action [28].
  • The Arabidopsis NPR1 gene is a positive regulator of SAR, essential for transducing the SAR signal salicylic acid (SA) [29].
  • The CHL1 gene of Arabidopsis, which when mutated confers resistance to the herbicide chlorate and a decrease in nitrate uptake, was isolated and found to encode a protein with 12 putative membrane-spanning segments [30].
  • The Wassilewskija strain of Arabidopsis has four genes encoding the tryptophan enzyme phosphoribosylanthranilate isomerase (PAI) located at three unlinked sites [31].
 

Gene context of Arabidopsis

  • COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain [32].
  • The Arabidopsis NPR1 gene controls the onset of systemic acquired resistance (SAR), a plant immunity, to a broad spectrum of pathogens that is normally established after a primary exposure to avirulent pathogens [33].
  • Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis [34].
  • This effect is independent of the presence of RPS2, the Arabidopsis R protein that senses AvrRpt2 [35].
  • Arabidopsis COP9 is a component of a large protein complex that is essential for the light control of a developmental switch and whose conformation or size is modulated by light [36].
 

Analytical, diagnostic and therapeutic context of Arabidopsis

References

  1. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Mackey, D., Holt, B.F., Wiig, A., Dangl, J.L. Cell (2002) [Pubmed]
  2. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Pei, Z.M., Ghassemian, M., Kwak, C.M., McCourt, P., Schroeder, J.I. Science (1998) [Pubmed]
  3. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. Tzfira, T., Vaidya, M., Citovsky, V. EMBO J. (2001) [Pubmed]
  4. Molecular dissection of GT-1 from Arabidopsis. Hiratsuka, K., Wu, X., Fukuzawa, H., Chua, N.H. Plant Cell (1994) [Pubmed]
  5. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Sunkar, R., Zhu, J.K. Plant Cell (2004) [Pubmed]
  6. The Arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Wang, Y., Henriksson, E., Söderman, E., Henriksson, K.N., Sundberg, E., Engström, P. Dev. Biol. (2003) [Pubmed]
  7. A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nowack, M.K., Grini, P.E., Jakoby, M.J., Lafos, M., Koncz, C., Schnittger, A. Nat. Genet. (2006) [Pubmed]
  8. MEDEA takes control of its own imprinting. Arnaud, P., Feil, R. Cell (2006) [Pubmed]
  9. The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting. Köhler, C., Page, D.R., Gagliardini, V., Grossniklaus, U. Nat. Genet. (2005) [Pubmed]
  10. The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Wildwater, M., Campilho, A., Perez-Perez, J.M., Heidstra, R., Blilou, I., Korthout, H., Chatterjee, J., Mariconti, L., Gruissem, W., Scheres, B. Cell (2005) [Pubmed]
  11. Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Torres, M.A., Jones, J.D., Dangl, J.L. Nat. Genet. (2005) [Pubmed]
  12. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Kiyosue, T., Yoshiba, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. Plant Cell (1996) [Pubmed]
  13. Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Zhou, N., Tootle, T.L., Glazebrook, J. Plant Cell (1999) [Pubmed]
  14. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Choe, S., Dilkes, B.P., Fujioka, S., Takatsuto, S., Sakurai, A., Feldmann, K.A. Plant Cell (1998) [Pubmed]
  15. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Valentin, H.E., Lincoln, K., Moshiri, F., Jensen, P.K., Qi, Q., Venkatesh, T.V., Karunanandaa, B., Baszis, S.R., Norris, S.R., Savidge, B., Gruys, K.J., Last, R.L. Plant Cell (2006) [Pubmed]
  16. Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Schluepmann, H., Pellny, T., van Dijken, A., Smeekens, S., Paul, M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  17. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Guo, H., Ecker, J.R. Cell (2003) [Pubmed]
  18. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A., Ecker, J.R. Cell (1993) [Pubmed]
  19. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Axtell, M.J., Staskawicz, B.J. Cell (2003) [Pubmed]
  20. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Richards, E.J., Ausubel, F.M. Cell (1988) [Pubmed]
  21. Regulation of the arabidopsis floral homeotic gene APETALA1. Gustafson-Brown, C., Savidge, B., Yanofsky, M.F. Cell (1994) [Pubmed]
  22. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Oppenheimer, D.G., Herman, P.L., Sivakumaran, S., Esch, J., Marks, M.D. Cell (1991) [Pubmed]
  23. Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Jarillo, J.A., Gabrys, H., Capel, J., Alonso, J.M., Ecker, J.R., Cashmore, A.R. Nature (2001) [Pubmed]
  24. Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Dörmann, P., Balbo, I., Benning, C. Science (1999) [Pubmed]
  25. Ion homeostasis during salt stress in plants. Serrano, R., Rodriguez-Navarro, A. Curr. Opin. Cell Biol. (2001) [Pubmed]
  26. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Mori, T., Kuroiwa, H., Higashiyama, T., Kuroiwa, T. Nat. Cell Biol. (2006) [Pubmed]
  27. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., Friml, J. Cell (2003) [Pubmed]
  28. EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins: EBF1 and EBF2. Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C., Genschik, P. Cell (2003) [Pubmed]
  29. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Li, X., Zhang, Y., Clarke, J.D., Li, Y., Dong, X. Cell (1999) [Pubmed]
  30. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Tsay, Y.F., Schroeder, J.I., Feldmann, K.A., Crawford, N.M. Cell (1993) [Pubmed]
  31. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Bender, J., Fink, G.R. Cell (1995) [Pubmed]
  32. COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Deng, X.W., Matsui, M., Wei, N., Wagner, D., Chu, A.M., Feldmann, K.A., Quail, P.H. Cell (1992) [Pubmed]
  33. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., Dong, X. Cell (1997) [Pubmed]
  34. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Braam, J., Davis, R.W. Cell (1990) [Pubmed]
  35. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., Dangl, J.L. Cell (2003) [Pubmed]
  36. The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Chamovitz, D.A., Wei, N., Osterlund, M.T., von Arnim, A.G., Staub, J.M., Matsui, M., Deng, X.W. Cell (1996) [Pubmed]
  37. Functional interaction of phytochrome B and cryptochrome 2. Más, P., Devlin, P.F., Panda, S., Kay, S.A. Nature (2000) [Pubmed]
  38. Arabidopsis thaliana DNA methylation mutants. Vongs, A., Kakutani, T., Martienssen, R.A., Richards, E.J. Science (1993) [Pubmed]
  39. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Alonso, J.M., Hirayama, T., Roman, G., Nourizadeh, S., Ecker, J.R. Science (1999) [Pubmed]
  40. Transcription switches for protoxylem and metaxylem vessel formation. Kubo, M., Udagawa, M., Nishikubo, N., Horiguchi, G., Yamaguchi, M., Ito, J., Mimura, T., Fukuda, H., Demura, T. Genes Dev. (2005) [Pubmed]
  41. Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1. Siaud, N., Dray, E., Gy, I., Gérard, E., Takvorian, N., Doutriaux, M.P. EMBO J. (2004) [Pubmed]
 
WikiGenes - Universities