The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Attenuation of memory with Tyr-D-Arg-Phe-beta-Ala-NH2, a novel dermorphin analog with high affinity for mu-opioid receptors.

The involvement of mu-opioid receptors in memory retrieval was examined in mice by using Tyr-D-Arg-Phe-beta-Ala-NH2 (TAPA), a novel dermorphin analog with high affinity for mu-opioid receptors, and passive avoidance learning. TAPA was intracerebroventricularly administered to mice before retention tests of passive avoidance learning. A 0.3-ng dose of TAPA markedly shortened step-down latency of passive avoidance learning, and the shortening of step-down latency was reversed by treatment with beta-funaltrexamine (5 micrograms), a mu-opioid receptor antagonist, indicating that TAPA (0.3 ng) attenuates memory retrieval. Although the attenuating dose (0.3 ng) of TAPA failed to affect horizontal or vertical locomotor activity, a 3-ng dose of TAPA showed a tendency to decrease vertical locomotor activity. A 30-ng dose of TAPA produced a significant increase in horizontal locomotor activity accompanied by a marked reduction of vertical locomotor activity. TAPA (3 ng) produced a significant increase in step-down latency of passive avoidance learning with lower intensity of electroshock or without electroshock during training. These results suggest that the activation of mu-opioid receptors impairs memory retrieval.[1]

References

  1. Attenuation of memory with Tyr-D-Arg-Phe-beta-Ala-NH2, a novel dermorphin analog with high affinity for mu-opioid receptors. Ukai, M., Kobayashi, T., Mori, K., Shinkai, N., Sasaki, Y., Kameyama, T. Eur. J. Pharmacol. (1995) [Pubmed]
 
WikiGenes - Universities