The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Distinct Ras effector pathways are involved in Fc epsilon R1 regulation of the transcriptional activity of Elk-1 and NFAT in mast cells.

Activation of Ras GTPases is a conserved feature of antigen receptor signaling, including Fc epsilon R1 activation of mast cells. Antigenic cross-linking of the Fc epsilon R1 on mast cells results in secretion of allergic mediators and induction of immediate early and cytokine genes. Here we examine the role of Ras in coupling the Fc epsilon R1 to transcriptional regulation. The transcription factors Elk-1, an immediate early gene regulator and the nuclear factor of activated T cells (NFAT), in the context of the IL-4 gene, are identified as Ras targets in mast cells. Ras mediates diverse effects via its diverse effector pathways, which may include other members of the Ras GTPase family such as RhoA and Rac-1. We observe that Elk-1 and NFAT are targeted by distinct Ras effector pathways in mast cells. Activation of the "classical" Ras/Raf-1/MEK/ ERK cascade is necessary and sufficient for Fc epsilon R1 induction of Elk-1. Ras function is required, but not sufficient for Fc epsilon R1 induction of NFAT. However, activation or inhibition of Ras markedly shifts the antigen dose-response for Fc epsilon R1 induction of NFAT. The effector pathway for Ras activation of NFAT is not Raf-1/MEK. We identify that the Rac-1 GTPase is critical in Fc epsilon R1 regulation of NFAT, acting either in parallel with or as an effector of Ras. These data place Ras in a crucial position in mast cells, regulating disparate nuclear targets. Moreover, we identify that two GTPases, Ras and Rac-1, are important regulators of NFAT, and therefore of cytokine expression in mast cells.[1]

References

 
WikiGenes - Universities