The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Tryptophan residues in caldesmon are major determinants for calmodulin binding.

Calmodulin has been shown to interact with the COOH-terminal domain of gizzard h-caldesmon at three sites, A (residues 658-666), B (residues 687-695), and B' (residues 717-725), each of which contains a Trp residue [Zhan et al. (1991) J. Biol. Chem. 266, 21810-21814; Marston et al. (1994) J. Biol. Chem. 296, 8134-8139; Mezgueldi et al. (1994) J. Biol. Chem. 269, 12824-12832]. To determine the contribution of each of the three Trp residues in the calmodulin-caldesmon interaction, we have mutated the Trp residues to Ala in the COOH-terminal domain of fibroblast caldesmon (CaD39) and studied the effects on calmodulin binding by fluorescence measurements and using immobilized calmodulin. Wild-type CaD39 binds with a Kd of 0.13 x 10(-6) M and a stoichiometry of 1 mol of calmodulin per mol of caldesmon. Replacing Trp 659 at site A or Trp 692 at site B to Ala reduces binding by 22- and 31-fold (Kd = 2.9 x 10(-6) and 4.0 x 10(-6) M), respectively, and destabilizes the CaD39-calmodulin complex by 1.75 and 1.94 kcal mol-1, respectively. Mutation of both Trp 659 and Trp 692 to Ala further reduces binding with a Kd of 6.1 x 10(-6) M and destabilizes the complex by 2.17 kcal mol-1. On the other hand, mutation of Trp 722 at site B' to Ala causes a much smaller decrease in affinity (Kd = 0.6 x 10(-6) M) and results in a destabilization energy of 0.87 kcal mol-1. To investigate the relative importance of the amino acid residues near each Trp residue in the caldesmon-calmodulin interaction, deletion mutants were constructed lacking site A, site B, and site A + B. Although deletion of site A decreases binding of CaD39 to calmodulin by 13-fold (Kd = 1.7 x 10(-6) M), it results in tighter binding than mutation of Trp 659 to Ala at this site, suggesting that the residues neighboring Trp 659 may contribute negatively to the interaction. Deletion of site B causes a similar reduction in binding (Kd = 4.1 x 10(-6) M) as observed for replacing Trp 692 to Ala at this site, indicating that Trp 692 is the major, if not the only, binding determinant at site B. Deletion of both site A and site B drastically reduces binding by 62-fold. Taken together, these results suggest that Trp 659 and Trp 692 are the major determinants in the caldesmon-calmodulin interaction and that Trp 722 in site B' plays a minor role.[1]

References

  1. Tryptophan residues in caldesmon are major determinants for calmodulin binding. Graether, S.P., Heinonen, T.Y., Raharjo, W.H., Jin, J.P., Mak, A.S. Biochemistry (1997) [Pubmed]
 
WikiGenes - Universities