The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Extracting protein alignment models from the sequence database.

Biologists often gain structural and functional insights into a protein sequence by constructing a multiple alignment model of the family. Here a program called Probe fully automates this process of model construction starting from a single sequence. Central to this program is a powerful new method to locate and align only those, often subtly, conserved patterns essential to the family as a whole. When applied to randomly chosen proteins, Probe found on average about four times as many relationships as a pairwise search and yielded many new discoveries. These include: an obscure subfamily of globins in the roundworm Caenorhabditis elegans ; two new superfamilies of metallohydrolases; a lipoyl/biotin swinging arm domain in bacterial membrane fusion proteins; and a DH domain in the yeast Bud3 and Fus2 proteins. By identifying distant relationships and merging families into superfamilies in this way, this analysis further confirms the notion that proteins evolved from relatively few ancient sequences. Moreover, this method automatically generates models of these ancient conserved regions for rapid and sensitive screening of sequences.[1]

References

  1. Extracting protein alignment models from the sequence database. Neuwald, A.F., Liu, J.S., Lipman, D.J., Lawrence, C.E. Nucleic Acids Res. (1997) [Pubmed]
 
WikiGenes - Universities