The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Caenorhabditis

  • A complementary DNA for the Aequorea victoria green fluorescent protein (GFP) produces a fluorescent product when expressed in prokaryotic (Escherichia coli) or eukaryotic (Caenorhabditis elegans) cells [1].
  • One of the candidate gene products, FEZ1 (fasciculation and elongation protein zeta-1), a protein kinase C (PKC)zeta-interacting protein homologous to the Caenorhabditis elegans synaptic transport protein UNC-76, was found to be up-regulated >30-fold in the resistant R3-2 line [2].
  • Genetic studies in Caenorhabditis elegans identified lin-9 to function together with the retinoblastoma homologue lin-35 in vulva differentiation [3].
  • The predicted Mep1p protein shares high sequence similarity with several bacterial proteins of unknown function, notably the product of the nitrogen-regulated nrgA gene of Bacillus subtilis, and with that of a partial cDNA sequence derived from Caenorhabditis elegans [4].
  • The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans [5].

Psychiatry related information on Caenorhabditis


High impact information on Caenorhabditis

  • Similarly, mutation of lin-2, a related MAGUK in Caenorhabditis elegans, blocks vulval development, and mutation of the postsynaptic density protein PSD-95 impairs synaptic plasticity in mammalian brain [10].
  • Here we show coordinate regulation of Caenorhabditis elegans fat storage by orthologues of these genes acting in ciliated neurons and by a 3-ketoacyl-coA thiolase (encoded by kat-1) that acts in fat storage tissue [11].
  • We report that Sir2 activation through increased sir-2.1 dosage or treatment with the sirtuin activator resveratrol specifically rescued early neuronal dysfunction phenotypes induced by mutant polyglutamines in transgenic Caenorhabditis elegans [12].
  • Using isogenic populations of the nematode Caenorhabditis elegans, we show that, on the first day of adult life, chance variation in the level of induction of a green fluorescent protein (GFP) reporter coupled to a promoter from the gene hsp-16.2 predicts as much as a fourfold variation in subsequent survival [13].
  • In this issue of Cell, Norman, Maricq, and colleagues (Norman et al., 2005) show that VAV-1, a guanine nucleotide exchange factor for Rho-family GTPases, is necessary for three rhythmic behaviors in the nematode Caenorhabditis elegans: feeding, defecation, and ovulation [14].

Chemical compound and disease context of Caenorhabditis


Biological context of Caenorhabditis


Anatomical context of Caenorhabditis


Associations of Caenorhabditis with chemical compounds

  • To identify mechanisms responsible for intoxication, we screened for Caenorhabditis elegans mutants with altered behavioral responses to ethanol [29].
  • Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA [30].
  • The NH2-terminal 85 amino acids of Apaf-1 show 21% identity and 53% similarity to the NH2-terminal prodomain of the Caenorhabditis elegans caspase, CED-3 [31].
  • Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant [32].
  • In Caenorhabditis elegans and Drosophila, genetic studies have shown that Ras activation by tyrosine kinases requires the protein Sem-5/drk, which contains a single Src-homology (SH) 2 domain and two flanking SH3 domains [33].

Gene context of Caenorhabditis


Analytical, diagnostic and therapeutic context of Caenorhabditis


  1. Green fluorescent protein as a marker for gene expression. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C. Science (1994) [Pubmed]
  2. Overexpression of fasciculation and elongation protein zeta-1 (FEZ1) induces a post-entry block to retroviruses in cultured cells. Naghavi, M.H., Hatziioannou, T., Gao, G., Goff, S.P. Genes Dev. (2005) [Pubmed]
  3. Inhibition of oncogenic transformation by mammalian Lin-9, a pRB-associated protein. Gagrica, S., Hauser, S., Kolfschoten, I., Osterloh, L., Agami, R., Gaubatz, S. EMBO J. (2004) [Pubmed]
  4. Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. Marini, A.M., Vissers, S., Urrestarazu, A., André, B. EMBO J. (1994) [Pubmed]
  5. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Morley, J.F., Brignull, H.R., Weyers, J.J., Morimoto, R.I. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  6. Presenilins: molecular switches between proteolysis and signal transduction. Annaert, W., De Strooper, B. Trends Neurosci. (1999) [Pubmed]
  7. Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach. Hay, D.G., Sathasivam, K., Tobaben, S., Stahl, B., Marber, M., Mestril, R., Mahal, A., Smith, D.L., Woodman, B., Bates, G.P. Hum. Mol. Genet. (2004) [Pubmed]
  8. The Caenorhabditis elegans odr-2 gene encodes a novel Ly-6-related protein required for olfaction. Chou, J.H., Bargmann, C.I., Sengupta, P. Genetics (2001) [Pubmed]
  9. Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon! Liedtke, W., Kim, C. Cell. Mol. Life Sci. (2005) [Pubmed]
  10. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Funke, L., Dakoji, S., Bredt, D.S. Annu. Rev. Biochem. (2005) [Pubmed]
  11. Polygenic control of Caenorhabditis elegans fat storage. Mak, H.Y., Nelson, L.S., Basson, M., Johnson, C.D., Ruvkun, G. Nat. Genet. (2006) [Pubmed]
  12. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Parker, J.A., Arango, M., Abderrahmane, S., Lambert, E., Tourette, C., Catoire, H., Néri, C. Nat. Genet. (2005) [Pubmed]
  13. A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Rea, S.L., Wu, D., Cypser, J.R., Vaupel, J.W., Johnson, T.E. Nat. Genet. (2005) [Pubmed]
  14. VAV's got rhythm. Baylis, H.A. Cell (2005) [Pubmed]
  15. Introduction of an additional pathway for lactate oxidation in the treatment of lactic acidosis and mitochondrial dysfunction in Caenorhabditis elegans. Grad, L.I., Sayles, L.C., Lemire, B.D. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  16. Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Huffman, D.L., Abrami, L., Sasik, R., Corbeil, J., van der Goot, F.G., Aroian, R.V. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  17. Development and fertility in Caenorhabditis elegans clk-1 mutants depend upon transport of dietary coenzyme Q8 to mitochondria. Jonassen, T., Marbois, B.N., Faull, K.F., Clarke, C.F., Larsen, P.L. J. Biol. Chem. (2002) [Pubmed]
  18. Molecular cloning and expression of a 2-arylpropionyl-coenzyme A epimerase: a key enzyme in the inversion metabolism of ibuprofen. Reichel, C., Brugger, R., Bang, H., Geisslinger, G., Brune, K. Mol. Pharmacol. (1997) [Pubmed]
  19. Hydrogen peroxide-mediated killing of Caenorhabditis elegans: a common feature of different streptococcal species. Bolm, M., Jansen, W.T., Schnabel, R., Chhatwal, G.S. Infect. Immun. (2004) [Pubmed]
  20. Identification of the murine beige gene by YAC complementation and positional cloning. Perou, C.M., Moore, K.J., Nagle, D.L., Misumi, D.J., Woolf, E.A., McGrail, S.H., Holmgren, L., Brody, T.H., Dussault, B.J., Monroe, C.A., Duyk, G.M., Pryor, R.J., Li, L., Justice, M.J., Kaplan, J. Nat. Genet. (1996) [Pubmed]
  21. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Conradt, B., Horvitz, H.R. Cell (1998) [Pubmed]
  22. Mutations in the unc-54 myosin heavy chain gene of Caenorhabditis elegans that alter contractility but not muscle structure. Moerman, D.G., Plurad, S., Waterston, R.H., Baillie, D.L. Cell (1982) [Pubmed]
  23. Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Fares, H., Greenwald, I. Nat. Genet. (2001) [Pubmed]
  24. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Hoeppner, D.J., Hengartner, M.O., Schnabel, R. Nature (2001) [Pubmed]
  25. The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Malone, C.J., Misner, L., Le Bot, N., Tsai, M.C., Campbell, J.M., Ahringer, J., White, J.G. Cell (2003) [Pubmed]
  26. Mutations in the Caenorhabditis elegans unc-4 gene alter the synaptic input to ventral cord motor neurons. White, J.G., Southgate, E., Thomson, J.N. Nature (1992) [Pubmed]
  27. Defective membrane repair in dysferlin-deficient muscular dystrophy. Bansal, D., Miyake, K., Vogel, S.S., Groh, S., Chen, C.C., Williamson, R., McNeil, P.L., Campbell, K.P. Nature (2003) [Pubmed]
  28. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Fadok, V.A., Bratton, D.L., Rose, D.M., Pearson, A., Ezekewitz, R.A., Henson, P.M. Nature (2000) [Pubmed]
  29. A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Davies, A.G., Pierce-Shimomura, J.T., Kim, H., VanHoven, M.K., Thiele, T.R., Bonci, A., Bargmann, C.I., McIntire, S.L. Cell (2003) [Pubmed]
  30. Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Cheung, I., Schertzer, M., Rose, A., Lansdorp, P.M. Nat. Genet. (2002) [Pubmed]
  31. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Zou, H., Henzel, W.J., Liu, X., Lutschg, A., Wang, X. Cell (1997) [Pubmed]
  32. Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Sze, J.Y., Victor, M., Loer, C., Shi, Y., Ruvkun, G. Nature (2000) [Pubmed]
  33. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Rozakis-Adcock, M., Fernley, R., Wade, J., Pawson, T., Bowtell, D. Nature (1993) [Pubmed]
  34. lin-12, a nematode homeotic gene, is homologous to a set of mammalian proteins that includes epidermal growth factor. Greenwald, I. Cell (1985) [Pubmed]
  35. Genetic control of programmed cell death in the nematode C. elegans. Ellis, H.M., Horvitz, H.R. Cell (1986) [Pubmed]
  36. Molecular analysis of the C. elegans sex-determining gene tra-1: a gene encoding two zinc finger proteins. Zarkower, D., Hodgkin, J. Cell (1992) [Pubmed]
  37. dpy-13: a nematode collagen gene that affects body shape. von Mende, N., Bird, D.M., Albert, P.S., Riddle, D.L. Cell (1988) [Pubmed]
  38. Molecular cloning and transcript analysis of fem-3, a sex-determination gene in Caenorhabditis elegans. Rosenquist, T.A., Kimble, J. Genes Dev. (1988) [Pubmed]
  39. The Caenorhabditis elegans gene lin-10 is broadly expressed while required specifically for the determination of vulval cell fates. Kim, S.K., Horvitz, H.R. Genes Dev. (1990) [Pubmed]
  40. Sequence and transmembrane topology of MEC-4, an ion channel subunit required for mechanotransduction in Caenorhabditis elegans. Lai, C.C., Hong, K., Kinnell, M., Chalfie, M., Driscoll, M. J. Cell Biol. (1996) [Pubmed]
  41. Isolation of actin-associated proteins from Caenorhabditis elegans oocytes and their localization in the early embryo. Aroian, R.V., Field, C., Pruliere, G., Kenyon, C., Alberts, B.M. EMBO J. (1997) [Pubmed]
  42. PDK1 regulates growth through Akt and S6K in Drosophila. Rintelen, F., Stocker, H., Thomas, G., Hafen, E. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
WikiGenes - Universities