The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Processing/activation of CPP32-like proteases is involved in transforming growth factor beta1-induced apoptosis in rat hepatocytes.

Apoptosis induced in rat hepatocytes by transforming growth factor beta1 (TGF-beta1) was accompanied by the activation of interleukin-1beta converting enzyme (ICE)-like proteases. Cell lysates were isolated at various times after TGF-beta1 treatment and analyzed for ICE and CPP32-like activity, using N-acetyl-Tyr-Val-Ala-Asp-7-amino-4-methylcoumarin (Ac-YVAD.AMC) and benzyloxycarbonyl-Asp-Glu-Val-Asp-7-amino-4-trifluoromethylcoumarin (Z-DEVD.AFC), respectively. CPP32-like but not ICE protease activity increased in a time dependent manner and preceded the onset of apoptosis. Kinetic studies in cell lysates indicated that more than one CPP32-like protease was being activated. This was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)/Western blotting of TGF-beta1-treated cells, which showed limited processing of CPP32 as shown by the appearance of the catalytically active p17 subunit. Loss of pro-Mch3alpha was also observed but the catalytically active p19 subunit was not detected. Staurosporine, which induced a much greater level of hepatocyte apoptosis, produced a concomitant increase in CPP32/Mch3alpha processing as shown by the appearance of the p17/p19 subunits and the corresponding increase in CPP32-like protease activity. Apoptosis, CPP32/Mch3alpha processing and the increase in CPP32-like protease activity induced by TGF-beta1 and staurosporine were abolished in hepatocytes pretreated with Z-Asp-Glu-Val-Asp (OMe) fluoromethylketone (Z-DEVD.FMK) or Z-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK). These peptide analogues were potent inhibitors of CPP32-like protease activity in lysates. Pretreatment of hepatocytes with cycloheximide also blocked TGF-beta1- induced apoptosis and the increase in CPP32-like activity. Unlike Z-VAD.FMK and Z-DEVD.FMK, cycloheximide did not inhibit CPP32-like protease activity in cell lysates. Thus, cycloheximide may block apoptosis by inhibiting the synthesis of a protein, which is involved in the upstream events responsible for the activation of the CPP32-like protease activity. Our studies have identified two of the CPP32-like proteases, namely CPP32 and Mch3alpha, which are activated during the execution phase of hepatocyte apoptosis.[1]


WikiGenes - Universities