Promoter structure-dependent functioning of the general transcription factor IIE in Saccharomyces cerevisiae.
General transcription factor (TF) IIE is an essential component of the basal transcription complex for protein-encoding genes, which is widely conserved in eukaryotes. Here we analyzed requirement for TFIIE for transcription in vivo by using yeast Saccharomyces cerevisiae cells harboring mutations in the TFA1 gene encoding the larger one of the two subunits of TFIIE. Deletion analysis indicated that the N-terminal half of Tfa1 protein has an essential function to support the cell growth. In a temperature-sensitive tfa1 mutant cell, the steady-state level of bulk poly(A)+ RNA decreased rapidly at the restrictive temperature. Surprisingly, levels of several mRNAs, whose transcription is directed by the promoters lacking the typical TATA sequence, were not affected in the mutant cells at that temperature. This promoter-specific functioning of TFIIE was reproduced in a cell-free system composed of TFIIE-depleted nuclear extracts. These results strongly suggest that requirement for TFIIE varies in each gene depending on the promoter structures in vivo.[1]References
- Promoter structure-dependent functioning of the general transcription factor IIE in Saccharomyces cerevisiae. Sakurai, H., Ohishi, T., Fukasawa, T. J. Biol. Chem. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg