The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Cell-Free System

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Cell-Free System


High impact information on Cell-Free System

  • Studies in whole cells and in cell-free systems indicate that structural requirements around the COOH-terminal cleavage site of nascent proteins are similar to those at the cleavage site of NH2-terminal signal peptidase [6].
  • A cell-free system that mimics the reassembly of Golgi stacks at the end of mitosis requires two ATPases, NSF and p97, to rebuild Golgi cisternae [7].
  • Cyclin/Cdk-dependent initiation of DNA replication in a human cell-free system [8].
  • Antibodies to this protein and a recombinant form of it block cisternal stacking in a cell-free system, justifying its designation as a Golgi ReAssembly Stacking Protein (GRASP65) [9].
  • The recombinant nim1 protein autophosphorylates on both tyrosine and serine residues and can phosphorylate the isolated wee1 protein directly in a cell-free system [10].

Chemical compound and disease context of Cell-Free System


Biological context of Cell-Free System


Anatomical context of Cell-Free System


Associations of Cell-Free System with chemical compounds


Gene context of Cell-Free System

  • The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system [31].
  • In a cell-free system, addition of active Cdc42 significantly stimulates the actin-depolymerizing activity of N-WASP, creating free barbed ends from which actin polymerization can then take place [32].
  • Furthermore, in a cell-free system, concomitant neutralization of AIF and CAD is required to suppress the nuclear DNA loss caused by cytoplasmic extracts from apoptotic wild-type cells [33].
  • GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system [34].
  • Utilizing a cell-free system in which caspases were activated in cytosolic extracts by addition of cytochrome c, c-IAP-1 and c-IAP-2 inhibited both the generation of caspase activities and proteolytic processing of pro-caspase-3 [35].

Analytical, diagnostic and therapeutic context of Cell-Free System


  1. Activation of melanoma tyrosinase by a cyclic AMP-dependent protein kinase in a cell-free system. Körner, A., Pawelek, J. Nature (1977) [Pubmed]
  2. Serum angiotensin-1 converting enzyme activity processes a human immunodeficiency virus 1 gp160 peptide for presentation by major histocompatibility complex class I molecules. Kozlowski, S., Corr, M., Takeshita, T., Boyd, L.F., Pendleton, C.D., Germain, R.N., Berzofsky, J.A., Margulies, D.H. J. Exp. Med. (1992) [Pubmed]
  3. Reconstitution of transport of vesicular stomatitis virus G protein from the endoplasmic reticulum to the Golgi complex using a cell-free system. Balch, W.E., Wagner, K.R., Keller, D.S. J. Cell Biol. (1987) [Pubmed]
  4. An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Kiga, D., Sakamoto, K., Kodama, K., Kigawa, T., Matsuda, T., Yabuki, T., Shirouzu, M., Harada, Y., Nakayama, H., Takio, K., Hasegawa, Y., Endo, Y., Hirao, I., Yokoyama, S. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  5. A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Carrington, J.C., Dougherty, W.G. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  6. How glycosylphosphatidylinositol-anchored membrane proteins are made. Udenfriend, S., Kodukula, K. Annu. Rev. Biochem. (1995) [Pubmed]
  7. Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Rabouille, C., Kondo, H., Newman, R., Hui, N., Freemont, P., Warren, G. Cell (1998) [Pubmed]
  8. Cyclin/Cdk-dependent initiation of DNA replication in a human cell-free system. Krude, T., Jackman, M., Pines, J., Laskey, R.A. Cell (1997) [Pubmed]
  9. GRASP65, a protein involved in the stacking of Golgi cisternae. Barr, F.A., Puype, M., Vandekerckhove, J., Warren, G. Cell (1997) [Pubmed]
  10. Negative regulation of the wee1 protein kinase by direct action of the nim1/cdr1 mitotic inducer. Coleman, T.R., Tang, Z., Dunphy, W.G. Cell (1993) [Pubmed]
  11. In vitro reconstitution of osmoregulated expression of proU of Escherichia coli. Ramirez, R.M., Prince, W.S., Bremer, E., Villarejo, M. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  12. Interaction of the human insulin receptor tyrosine kinase from the baculovirus expression system with protein kinase C in a cell-free system. Ahn, J., Donner, D.B., Rosen, O.M. J. Biol. Chem. (1993) [Pubmed]
  13. Transport of the vesicular stomatitis glycoprotein to trans Golgi membranes in a cell-free system. Rothman, J.E. J. Biol. Chem. (1987) [Pubmed]
  14. Relative importance of 7-methylguanosine in ribosome binding and translation of vesicular stomatitis virus mRNA in wheat germ and reticulocyte cell-free systems. Lodish, H.F., Rose, J.K. J. Biol. Chem. (1977) [Pubmed]
  15. Isolation and characterization of collagen messenger RNA*. Wang, L., Simões, C.L., Sonohara, S., Brentani, M., Andrade, H.F., da Silva, S.M., Salles, J.M., Marques, N., Brentani, R. Nucleic Acids Res. (1975) [Pubmed]
  16. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Kasuga, M., Zick, Y., Blithe, D.L., Crettaz, M., Kahn, C.R. Nature (1982) [Pubmed]
  17. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Enari, M., Talanian, R.V., Wong, W.W., Nagata, S. Nature (1996) [Pubmed]
  18. Requirement for the replication protein SSB in human DNA excision repair. Coverley, D., Kenny, M.K., Munn, M., Rupp, W.D., Lane, D.P., Wood, R.D. Nature (1991) [Pubmed]
  19. Is estradiol a genotoxic mutagenic carcinogen? Liehr, J.G. Endocr. Rev. (2000) [Pubmed]
  20. Analysis of the mechanism of steroid hormone receptor-dependent gene activation in cell-free systems. Bagchi, M.K., Tsai, M.J., O'Malley, B.W., Tsai, S.Y. Endocr. Rev. (1992) [Pubmed]
  21. Synthesis of tropomyosin in myogenic cultures and in RNA-directed cell-free systems: qualitative changes in the polypeptides. Carmon, Y., Neuman, S., Yaffe, D. Cell (1978) [Pubmed]
  22. The programmed switch in lysine-rich histone synthesis at gastrulation. Arceci, R.J., Senger, D.R., Gross, P.R. Cell (1976) [Pubmed]
  23. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Dixon, R.A., Diehl, R.E., Opas, E., Rands, E., Vickers, P.J., Evans, J.F., Gillard, J.W., Miller, D.K. Nature (1990) [Pubmed]
  24. A role for phosphatidylinositol transfer protein in secretory vesicle formation. Ohashi, M., Jan de Vries, K., Frank, R., Snoek, G., Bankaitis, V., Wirtz, K., Huttner, W.B. Nature (1995) [Pubmed]
  25. Mediation of the attachment or fusion step in vesicular transport by the GTP-binding Ypt1 protein. Segev, N. Science (1991) [Pubmed]
  26. The glycoprotein that is transported between successive compartments of the Golgi in a cell-free system resides in stacks of cisternae. Braell, W.A., Balch, W.E., Dobbertin, D.C., Rothman, J.E. Cell (1984) [Pubmed]
  27. A novel pathway for glycan assembly: biosynthesis of the glycosyl-phosphatidylinositol anchor of the trypanosome variant surface glycoprotein. Masterson, W.J., Doering, T.L., Hart, G.W., Englund, P.T. Cell (1989) [Pubmed]
  28. Transformation of cells by an inhibitor of phosphatases acting on phosphotyrosine in proteins. Klarlund, J.K. Cell (1985) [Pubmed]
  29. Fatty acid remodeling: a novel reaction sequence in the biosynthesis of trypanosome glycosyl phosphatidylinositol membrane anchors. Masterson, W.J., Raper, J., Doering, T.L., Hart, G.W., Englund, P.T. Cell (1990) [Pubmed]
  30. On the existence of polyadenylated histone mRNA in Xenopus laevis oocytes. Levenson, R.G., Marcu, K.B. Cell (1976) [Pubmed]
  31. The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system. Kumagai, A., Dunphy, W.G. Cell (1991) [Pubmed]
  32. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Miki, H., Sasaki, T., Takai, Y., Takenawa, T. Nature (1998) [Pubmed]
  33. Two distinct pathways leading to nuclear apoptosis. Susin, S.A., Daugas, E., Ravagnan, L., Samejima, K., Zamzami, N., Loeffler, M., Costantini, P., Ferri, K.F., Irinopoulou, T., Prévost, M.C., Brothers, G., Mak, T.W., Penninger, J., Earnshaw, W.C., Kroemer, G. J. Exp. Med. (2000) [Pubmed]
  34. GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. Shorter, J., Watson, R., Giannakou, M.E., Clarke, M., Warren, G., Barr, F.A. EMBO J. (1999) [Pubmed]
  35. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. Roy, N., Deveraux, Q.L., Takahashi, R., Salvesen, G.S., Reed, J.C. EMBO J. (1997) [Pubmed]
  36. Biosynthesis, secretion and extracellular localization of anchorin CII, a collagen-binding protein of the calpactin family. Pfäffle, M., Ruggiero, F., Hofmann, H., Fernández, M.P., Selmin, O., Yamada, Y., Garrone, R., von der Mark, K. EMBO J. (1988) [Pubmed]
  37. Estradiol feedback effects on the alpha-subunit mRNA in the sheep pituitary gland: correlation with serum and pituitary luteinizing hormone concentrations. Landefeld, T., Kepa, J., Karsch, F. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  38. Presecretory and cytoplasmic invertase polypeptides encoded by distinct mRNAs derived from the same structural gene differ by a signal sequence. Perlman, D., Halvorson, H.O., Cannon, L.E. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
WikiGenes - Universities