DNA binding of Escherichia coli arginine repressor mutants altered in oligomeric state.
The Escherichia coli arginine repressor (ArgR) controls expression of the arginine biosynthetic genes and acts as an accessory protein in Xer site-specific recombination at cer and related plasmid recombination sites. The hexameric wild-type protein shows L-arginine-dependent DNA binding. In this work, ArgR mutants that are defective in trimer-trimer interactions and bind DNA as trimers in an L-arginine-independent manner are isolated and characterized. Whereas the wild-type ArgR hexamer exhibits high-affinity binding to two repeated ARG boxes separated by 3 bp (each ARG box containing two identical dyad symmetrical 9 bp half-sites), the trimeric mutants bind to and footprint three adjacent half-sites of this 'idealized' substrate. Trimeric ArgR is impaired in its ability to repress the arginine biosynthetic genes and in Xer site-specific recombination. In the absence of L-arginine, residual wild-type ArgR-binding occurs as trimers. The binding of an N-terminal 77-amino-acid DNA-binding domain to idealized ARG boxes is also characterized.[1]References
- DNA binding of Escherichia coli arginine repressor mutants altered in oligomeric state. Chen, S.H., Merican, A.F., Sherratt, D.J. Mol. Microbiol. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg