The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Constitutive and strong association of PAF53 with RNA polymerase I.

Mouse RNA polymerase I (Pol I) is composed of 14 polypeptides, 3 of which are thought to be loosely associated with, and may be dislodged from, Pol I. To find out whether these polymerase-associated factors (PAF53, 51, and 49) serve a role in growth-dependent control of rDNA transcription, we generated polyclonal antibodies against three subunits of murine Pol I, RPA116, RPA40 and PAF53, and used different experimental approaches, e.g. immunoblot analysis, immunoprecipitation and immunofluorescence studies, to compare the stoichiometry of individual subunits both in different Pol I preparations and in extracts from cells grown under different conditions. This comparative analysis reveals that the molar ratio of the second largest subunit RPA116 to PAF53 is the same, irrespective of whether crude extracts or highly purified Pol I fractions are analyzed. Significantly, the relative level of PAF53 was comparable in exponentially growing or growth-arrested cells, indicating that growth-dependent fluctuations in Pol I activity are not accompanied by alterations in the amount of PAF53. In addition, we show by high resolution immunofluorescence analysis that, under conditions of repressed rDNA transcription, including serum starvation, actinomycin treatment und during mitosis, PAF53 remains attached to the transcriptional machinery. The finding that the Mr 53,000 protein remains in the multiprotein complex under all experimental conditions tested indicates that PAF53 is not a loosely associated regulatory factor but a bona fide subunit of Pol I.[1]

References

  1. Constitutive and strong association of PAF53 with RNA polymerase I. Seither, P., Zatsepina, O., Hoffmann, M., Grummt, I. Chromosoma (1997) [Pubmed]
 
WikiGenes - Universities