The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Regulation of lysine catabolism through lysine-ketoglutarate reductase and saccharopine dehydrogenase in Arabidopsis.

In plant and mammalian cells, excess lysine is catabolized by a pathway that is initiated by two enzymes, namely, lysine-ketoglutarate reductase and saccharopine dehydrogenase. In this study, we report the cloning of an Arabidopsis cDNA encoding a bifunctional polypeptide that contains both of these enzyme activities linked to each other. RNA gel blot analysis identified two mRNA bands-a large mRNA containing both lysine-ketoglutarate reductase and saccharopine dehydrogenase sequences and a smaller mRNA containing only the saccharopine dehydrogenase sequence. However, DNA gel blot hybridization using either the lysine-ketoglutarate reductase or the saccharopine dehydrogenase cDNA sequence as a probe suggested that the two mRNA populations apparently are encoded by the same gene. To test whether these two mRNAs are functional, protein extracts from Arabidopsis cells were fractionated by anion exchange chromatography. This fractionation revealed two separate peaks-one containing both coeluted lysine-ketoglutarate reductase and saccharopine dehydrogenase activities and the second containing only saccharopine dehydrogenase activity. RNA gel blot analysis and in situ hybridization showed that the gene encoding lysine-ketoglutarate reductase and saccharopine dehydrogenase is significantly upregulated in floral organs and in embryonic tissues of developing seeds. Our results suggest that lysine catabolism is subject to complex developmental and physiological regulation, which may operate at gene expression as well as post-translational levels.[1]


WikiGenes - Universities