The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

VMA12 encodes a yeast endoplasmic reticulum protein required for vacuolar H+-ATPase assembly.

The Saccharomyces cerevisiae vacuolar membrane proton-translocating ATPase (V-ATPase) can be divided into a peripheral membrane complex (V1) containing at least eight polypeptides of 69, 60, 54, 42, 32, 27, 14, and 13 kDa, and an integral membrane complex (V0) containing at least five polypeptides of 100, 36, 23, 17, and 16 kDa. Other yeast genes have been identified that are required for V-ATPase assembly but whose protein products do not co-purify with the enzyme complex. One such gene, VMA12, encodes a 25-kDa protein (Vma12p) that is predicted to contain two membrane-spanning domains. Biochemical analysis has revealed that Vma12p behaves as an integral membrane protein with both the N and C termini oriented toward the cytosol, and this protein immunolocalizes to the endoplasmic reticulum (ER). In cells lacking Vma12p (vma12Delta), the 100-kDa subunit of the V0 complex (which contains six to eight putative membrane-spanning domains) was rapidly degraded (t1/2 approximately 30 min). Protease protection assays revealed that the 100-kDa subunit was inserted/translocated correctly into the ER membrane of vma12Delta cells. These data indicate that Vma12p functions in the ER after the insertion of V0 subunits into the ER membrane. We propose that Vma12p functions directly in the assembly of the V0 subunits into a complex in the ER, and that assembly is required for the stability of the V0 subunits and their transport as a complex out of this compartment.[1]

References

 
WikiGenes - Universities