The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Sulfur tuft and turkey tail: biosynthesis and biodegradation of organohalogens by Basidiomycetes.

Chlorinated aliphatic and aromatic compounds are generally considered to be undesirable xenobiotic pollutants. However, the higher fungi, Basidiomycetes, have a widespread capacity for organohalogen biosynthesis. Adsorbable organic halogens ( AOX) and/or low-molecular-weight halogenated compounds are produced by Basidiomycetes of 68 genera from 20 different families. Most of the 81 halogenated metabolites identified from Basidiomycetes to date are chlorinated, although brominated and iodated metabolites have also been described. Two broad categories of Basidiomycete organohalogen metabolites are the halogenated aromatic compounds and the haloaliphatic compounds. Some of these organohalogen metabolites have demonstrable physiological roles as antibiotics and as metabolites involved in lignin degradation. Basidiomycetes produce large amounts of low-molecular-weight organohalogens or adsorbable organic halogens ( AOX) when grown on lignocellulosic substrates. In our view, Basidiomycetes, as decomposers of forest litter, are a major source of natural organohalogens in terrestrial environments. Basidiomycetes are also potent degraders of a wide range of chlorinated pollutants, such as bleachery effluent from kraft mills and pentachlorophenol, polychlorinated dioxins, and polychlorinated biphenyls. The extracellular, lignin-degrading enzymes of the Basidiomycetes are involved in the oxidative degradation of chlorophenols and dioxin and can cause reductive dechlorination of halomethanes. There is no clear-cut separation between "polluters" and "clean-uppers" within the Basidiomycetes. Several genera, e.g. Bjerkandera, Hericium, Phlebia, and Trametes, produce significant amounts of chlorinated compounds but are also highly effective in metabolizing or biotransforming chlorinated pollutants.[1]

References

 
WikiGenes - Universities