The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Chlorophenols     2,3,4,6-tetrachlorophenol

Synonyms: Dowicide 6, Dowicide F, CHEMBL320361, NSC-2428, ACMC-1ALND, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Chlorophenols

 

Psychiatry related information on Chlorophenols

 

High impact information on Chlorophenols

 

Chemical compound and disease context of Chlorophenols

 

Biological context of Chlorophenols

 

Anatomical context of Chlorophenols

 

Associations of Chlorophenols with other chemical compounds

  • Use of the fluorescent probe 1-anilino-8-naphthalene sulfonate to monitor the interactions of chlorophenols with phospholipid membranes (liposomes) [26].
  • To better understand the fate of chlorophenols treated in upflow anaerobic sludge bed reactors, we examined the ability of sludge granules from such bioreactors to degrade two trichlorophenols and one dichlorophenol in batch incubations under controlled conditions [27].
  • Immersed solvent microextraction of phenol and chlorophenols from water samples followed by gas chromatography-mass spectrometry [28].
  • Liquid-phase microextraction (LPME) coupled with gas chromatography-mass spectrometry were used to determine alkylphenols (APs), chlorophenols (CPs) and bisphenol-A (BPA) in aqueous samples [29].
  • The capacity of non-ligninolytic and ligninolytic fungi in the bioremediation of polycyclic aromatic hydrocarbon (PAHs), benzene-toluene-ethylbenzene-xylene (BTEX), chlorophenols, polychlorinated biphenyl, munitions waste and pesticides have been discussed [30].
 

Gene context of Chlorophenols

  • Fourteen phenols including chlorophenols and alkylphenols, could be efficiently adsorbed on a strong anion-exchange solid phase, Oasis MAX [31].
  • The polydimethylsiloxane-divinylbenzene (PDMS/DVB) fiber was the most suitable for preconcentrating the analytes from the headspace of an aqueous solution containing the dissolved honey samples where the chlorophenols had been submitted to acetylation [32].
  • Quantitative structure-activity relationships in fish toxicity studies. Part 2: the influence of pH on the QSAR of chlorophenols [33].
  • Estimates of homologue-specific emissions indicate that combustion processes represent a far more significant source of tetra and penta CDD/Fs than do chlorophenols, which in turn constitute a greater source of hepta- and octachlorinated congeners [34].
  • Evaluation of interactive toxicity of chlorophenols in water and soil using lux-marked biosensors [35].
 

Analytical, diagnostic and therapeutic context of Chlorophenols

  • In the light of Swedish studies reporting an association between exposure to phenoxyherbicides or chlorophenols and soft tissue sarcoma, a case-control study was undertaken that involved interviewing 82 subjects (cases) with soft tissue sarcoma and 92 controls with other types of cancer [1].
  • Electrochemical oxidation of chlorophenols at a boron-doped diamond electrode and their determination by high-performance liquid chromatography with amperometric detection [36].
  • New carrier electrolytes for the separation of chlorophenols by capillary electrophoresis [37].
  • Anodically pretreated diamond electrodes have been used for the detection of chlorophenols (CPs) in environmental water samples after high-performance liquid chromatographic (HPLC) separation [36].
  • The ELISA reported recognizes on a much less extent other chlorinated phenols, such as 2,3,4,6-tetrachlorophenol (2,3,4,6-TtCP, 21%), 2,4,5-TCP (12%) and 2,3,5-TCP (15%); however, brominated phenols (BP) are even more recognized than the corresponding chlorinated analogues (ex. 2,4,6-TBP, 710%; 2,4-DBP, 119%) [18].

References

  1. Soft tissue sarcoma and exposure to phenoxyherbicides and chlorophenols in New Zealand. Smith, A.H., Pearce, N.E., Fisher, D.O., Giles, H.J., Teague, C.A., Howard, J.K. J. Natl. Cancer Inst. (1984) [Pubmed]
  2. Malignant lymphoma of histiocytic type and exposure to phenoxyacetic acids or chlorophenols. Hardell, L. Lancet (1979) [Pubmed]
  3. Do phenoxy herbicides cause cancer in man? Coggon, D., Acheson, E.D. Lancet (1982) [Pubmed]
  4. Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact. Ahlborg, U.G., Thunberg, T.M. Crit. Rev. Toxicol. (1980) [Pubmed]
  5. Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Bouchard, B., Beaudet, R., Villemur, R., McSween, G., Lépine, F., Bisaillon, J.G. Int. J. Syst. Bacteriol. (1996) [Pubmed]
  6. Multi-criteria decision making in micellar liquid chromatographic separation of chlorophenols. Hadjmohammadi, M.R., Safa, F. Journal of separation science. (2004) [Pubmed]
  7. Exposure to dioxins as a risk factor for soft tissue sarcoma: a population-based case-control study. Eriksson, M., Hardell, L., Adami, H.O. J. Natl. Cancer Inst. (1990) [Pubmed]
  8. Occupational exposure to chlorophenoxy herbicides and chlorophenols. Peto, R. Lancet (1991) [Pubmed]
  9. Soft-tissue sarcoma, malignant lymphoma, and exposure to phenoxyacids or chlorophenols. Hardell, L., Axelson, O. Lancet (1982) [Pubmed]
  10. Sulfur tuft and turkey tail: biosynthesis and biodegradation of organohalogens by Basidiomycetes. de Jong, E., Field, J.A. Annu. Rev. Microbiol. (1997) [Pubmed]
  11. Isolation of Pseudomonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols. Kiyohara, H., Hatta, T., Ogawa, Y., Kakuda, T., Yokoyama, H., Takizawa, N. Appl. Environ. Microbiol. (1992) [Pubmed]
  12. 31P nuclear magnetic resonance studies of effects of some chlorophenols on Escherichia coli and a pentachlorophenol-degrading bacterium. Steiert, J.G., Thoma, W.J., Ugurbil, K., Crawford, R.L. J. Bacteriol. (1988) [Pubmed]
  13. An investigation of chlorophenol proton affinities and their influence on the biological activity of microorganisms. Basheer, M.M., Custodio, R., Volpe, P.L., Rittner, R. The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory. (2006) [Pubmed]
  14. Color and toxicity removal following tyrosinase-catalyzed oxidation of phenols. Ikehata, K., Nicell, J.A. Biotechnol. Prog. (2000) [Pubmed]
  15. Variation of toxicity during the ozonation of monochlorophenolic solutions. Shang, N.C., Yu, Y.H., Ma, H.W. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering. (2002) [Pubmed]
  16. Cancer and occupational exposure to chlorophenols. Gallagher, R.P., Threlfall, W.J. Lancet (1984) [Pubmed]
  17. How do organic solvents affect peroxidase structure and function? Ryu, K., Dordick, J.S. Biochemistry (1992) [Pubmed]
  18. Development and evaluation of an immunoassay for biological monitoring chlorophenols in urine as potential indicators of occupational exposure. Galve, R., Nichkova, M., Camps, F., Sanchez-Baeza, F., Marco, M.P. Anal. Chem. (2002) [Pubmed]
  19. Group philicity and electrophilicity as possible descriptors for modeling ecotoxicity applied to chlorophenols. Padmanabhan, J., Parthasarathi, R., Subramanian, V., Chattaraj, P.K. Chem. Res. Toxicol. (2006) [Pubmed]
  20. Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100. Xun, L. J. Bacteriol. (1996) [Pubmed]
  21. Equilibrium sampling through membranes of freely dissolved chlorophenols in water samples with hollow fiber supported liquid membrane. Liu, J.F., Jönsson, J.A., Mayer, P. Anal. Chem. (2005) [Pubmed]
  22. Activity of Desulfitobacterium sp. strain Viet1 demonstrates bioavailability of 2,4-dichlorophenol previously sequestered by the aquatic plant Lemna minor. Tront, J.M., Amos, B.K., Löffler, F.E., Saunders, F.M. Environ. Sci. Technol. (2006) [Pubmed]
  23. A Desulfitobacterium strain isolated from human feces that does not dechlorinate chloroethenes or chlorophenols. van de Pas, B.A., Harmsen, H.J., Raangs, G.C., de Vos, W.M., Schraa, G., Stams, A.J. Arch. Microbiol. (2001) [Pubmed]
  24. Effects of chlorophenols on isolated class A chloroplasts and thylakoids: a QSAR study. Tissut, M., Taillandier, G., Ravanel, P., Benoit-Guyod, J.L. Ecotoxicol. Environ. Saf. (1987) [Pubmed]
  25. Short-term effects of chlorophenols on the function and viability of primary cultured rat hepatocytes. Aschmann, C., Stork, T., Wassermann, O. Arch. Toxicol. (1989) [Pubmed]
  26. Use of the fluorescent probe 1-anilino-8-naphthalene sulfonate to monitor the interactions of chlorophenols with phospholipid membranes (liposomes). Danner, J., Resnick, H. Biochem. Pharmacol. (1980) [Pubmed]
  27. Limited degradation of chlorophenols by anaerobic sludge granules. Mohn, W.W., Kennedy, K.J. Appl. Environ. Microbiol. (1992) [Pubmed]
  28. Immersed solvent microextraction of phenol and chlorophenols from water samples followed by gas chromatography-mass spectrometry. Bagheri, H., Saber, A., Mousavi, S.R. Journal of chromatography. A. (2004) [Pubmed]
  29. Analysis of endocrine disrupting alkylphenols, chlorophenols and bisphenol-A using hollow fiber-protected liquid-phase microextraction coupled with injection port-derivatization gas chromatography-mass spectrometry. Basheer, C., Lee, H.K. Journal of chromatography. A. (2004) [Pubmed]
  30. Fungal diversity and use in decomposition of environmental pollutants. Tortella, G.R., Diez, M.C., Duran, N. Crit. Rev. Microbiol. (2005) [Pubmed]
  31. High performance solid-phase analytical derivatization of phenols for gas chromatography-mass spectrometry. Kojima, M., Tsunoi, S., Tanaka, M. Journal of chromatography. A. (2004) [Pubmed]
  32. Evaluation of solid-phase microextraction conditions for the determination of chlorophenols in honey samples using gas chromatography. Campillo, N., Peñalver, R., Hernández-Córdoba, M. Journal of chromatography. A. (2006) [Pubmed]
  33. Quantitative structure-activity relationships in fish toxicity studies. Part 2: the influence of pH on the QSAR of chlorophenols. Kŏnemann, H., Musch, A. Toxicology (1981) [Pubmed]
  34. A source inventory and budget for chlorinated dioxins and furans in the United Kingdom environment. Harrad, S.J., Jones, K.C. Sci. Total Environ. (1992) [Pubmed]
  35. Evaluation of interactive toxicity of chlorophenols in water and soil using lux-marked biosensors. Tiensing, T., Strachan, N., Paton, G.I. Journal of environmental monitoring : JEM. (2002) [Pubmed]
  36. Electrochemical oxidation of chlorophenols at a boron-doped diamond electrode and their determination by high-performance liquid chromatography with amperometric detection. Terashima, C., Rao, T.N., Sarada, B.V., Tryk, D.A., Fujishima, A. Anal. Chem. (2002) [Pubmed]
  37. New carrier electrolytes for the separation of chlorophenols by capillary electrophoresis. Jáuregui, O., Puignou, L., Galceran, M.T. Electrophoresis (2000) [Pubmed]
 
WikiGenes - Universities