The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Genetic characterization of the role of the two HOX proteins, Proboscipedia and Sex Combs Reduced, in determination of adult antennal, tarsal, maxillary palp and proboscis identities in Drosophila melanogaster.

Both Proboscipedia (PB) and Sex Combs Reduced (SCR) activities are required for determination of proboscis identity. Here we show that simultaneous removal of PB and SCR activity results in a proboscis-to-antenna transformation. Dominant negative PB molecules inhibit the activity of SCR indicating that PB and SCR interact in a multimeric protein complex in determination of proboscis identity. These data suggest that the expression pattern of PB and SCR and the ability of PB and SCR to interact in a multimeric complex control the determination of four adult structures. The absence of PB and SCR expression leads to antennal identity; expression of only PB leads to maxillary palp identity; expression of only SCR leads to tarsus identity; and expression of both PB and SCR, which results in the formation of a PB-SCR-containing complex, leads to proboscis identity. However, the PB-SCR interaction is not detectable in vitro and is not detectable genetically in the head region during embryogenesis, indicating the PB-SCR interaction may be regulated and indirect. This regulation may also explain why ectopic expression of SCR(Q50K) and SCR do not result in the expected transformation of the maxillary palp to an antennae and proboscis, respectively. Previous analysis of the requirements of SCR activity for adult pattern formation has shown that ectopic expression of SCR results in an antenna-to-tarsus transformation, but removal of SCR activity in a clone of cells does not result in a tarsus-to-arista transformation. Here we show in five independent assays the reason for this apparent contradictory requirement of SCR activity in tarsus determination. SCR activity is required cell nonautonomously for tarsus determination. Specifically, we propose that SCR activity is required in the mesodermal adepithelial cells of all leg imaginal discs at late second/early third instar larval stage for the synthesis of a mesoderm-specific, tarsus-inducing, signaling factor, which after secretion from the adepithelial cells acts on the overlaying ectodermal cells determining tarsus identity. This study characterizes a combinatorial interaction between two HOX proteins; a mechanism that may have a major role in patterning the anterior-posterior axis of other animals.[1]


WikiGenes - Universities