The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Cloning and sequence analysis of the plasmid-borne genes encoding the Eco29kI restriction and modification enzymes.

The Eco29kI restriction-modification system (RMS2) has been found to be localized on the plasmid pECO29 occurring naturally in the Escherichia coli strain 29k (Pertzev, A.V., Ruban, N.M., Zakharova, M.V., Beletskaya, I.V., Petrov, S.I., Kravetz, A.N., Solonin, A.S., 1992. Eco29kI, a novel plasmid encoded restriction endonuclease from Escherichia coli. Nucleic Acids Res. 20, 1991). The genes coding for this RMS2, a SacII isoschizomer recognizing the sequence CCGCGG have been cloned in Escherichia coli K802 and sequenced. The DNA sequence predicts the restriction endonuclease (ENase) of 214 amino acids (aa) (24,556 Da) and the DNA-methyltransferase (MTase) of 382 aa (43,007 Da) where the genes are separated by 2 bp and arranged in tandem with eco29kIR preceding eco29kIM. The recombinant plasmid with eco29kIR produces a protein of expected size. MEco29kI contains all the conserved aa sequence motifs characteristic of m5C-MTases. Remarkably, its variable region exhibits a significant similarity to the part of the specific target-recognition domain (TRD) from MBssHII--multispecific m5C-MTase (Schumann, J.J., Walter, J., Willert, J., Wild, C., Koch D., Trautner, T.A., 1996. MBssHII: a multispecific cytosine-C5-DNA-methyltransferase with unusual target recognizing properties. J. Mol. Biol. 257, 949-959), which recognizes five different sites on DNA (HaeII, MluI, Cfr10I, SacII and BssHII), and the comparison of the nt sequences of its variable regions allowed us to determine the putative TRD of MEco29kI.[1]

References

  1. Cloning and sequence analysis of the plasmid-borne genes encoding the Eco29kI restriction and modification enzymes. Zakharova, M.V., Beletskaya, I.V., Kravetz, A.N., Pertzev, A.V., Mayorov, S.G., Shlyapnikov, M.G., Solonin, A.S. Gene (1998) [Pubmed]
 
WikiGenes - Universities