The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals.

1. Changes in cytosolic and mitochondrial [Ca2+] produced by brief trains of action potentials were measured in motor nerve terminals using a rapidly scanning confocal microscope. Cytosolic [Ca2+] was measured using ionophoretically injected Oregon Green BAPTA 5N (OG-5N). Mitochondrial [Ca2+] was measured using rhod-2, bath loaded as dihydrorhod-2. 2. In response to 100-250 stimuli at 25-100 Hz the average cytosolic [Ca2+] showed an initial rapid increase followed by a much slower rate of increase. Mitochondrial [Ca2+] showed no detectable increase during the first fifteen to twenty stimuli, but after this initial delay also showed an initially rapid rise followed by a slower rate of increase. The onset of the increase in mitochondrial [Ca2+] coincided with the slowing of the rate of rise of cytosolic [Ca2+]. The peak levels of cytosolic and mitochondrial [Ca2+] both increased with increasing frequencies of stimulation. 3. When stimulation terminated, the initial rate of decay of cytosolic [Ca2+] was much more rapid than that of mitochondrial [Ca2+]. 4. After addition of carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 1-2 microM) to dissipate the proton electrochemical gradient across the mitochondrial membrane, cytosolic [Ca2+] rose rapidly throughout the stimulus train, reaching levels much higher than normal. CCCP inhibited the increase in mitochondrial [Ca2+]. 5. These results suggest that mitochondrial uptake of Ca2+ contributes importantly to buffering presynaptic cytosolic [Ca2+] during normal neuromuscular transmission.[1]

References

  1. Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals. David, G., Barrett, J.N., Barrett, E.F. J. Physiol. (Lond.) (1998) [Pubmed]
 
WikiGenes - Universities