The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

NC-CO-CN     2-oxopropanedinitrile

Synonyms: AC1LAPP8, AG-D-29987, CHEMBL2333073, CHEBI:33187, CTK4A7396, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of NC-CO-CN


High impact information on NC-CO-CN

  • In contrast with other plasma membrane proteins, multisubunit assembly of Cx43 was specifically and completely blocked when endoplasmic reticulum (ER)-to-Golgi transport was inhibited by 15 degrees C incubation, carbonyl cyanide m-chloro-phenylhydrazone, or brefeldin A or in CHO cell mutants with temperature-sensitive defects in secretion [6].
  • Loading of this store is prevented by carbonyl cyanide m-chlorophenylhydrazone or by antimycin A1 + oligomycin, agents that are known to inhibit mitochondrial Ca2+ import by dissipating the mitochondrial membrane potential [7].
  • Thus, when added immediately after labeling, ionophores that inhibit vesicular flow out of the ER, such as carbonyl cyanide m-chlorophenylhydrazone (CCCP) and monensin, suppressed the second phase of degradation of RI332 [8].
  • By preventing transport of G protein from the ER with the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone or by use of the temperature-sensitive mutant ts045, which is restricted to the ER at 40 degrees C, we showed that processing of G protein occurred in the ER and was not due to retention of newly synthesized Golgi enzymes [9].
  • Carbonyl cyanide m-chlorophenyl hydrazone also stops anaphase, but its effects are not reversible [10].

Chemical compound and disease context of NC-CO-CN

  • 5. Responses to anoxia, to blockade of electron transport by CN-, and to the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP), were equivalent in amplitude [11].
  • Addition of lactose to Escherichia coli ML 308-225 membrane vesicles under nonenergized conditions induces transient alkalinization of the medium, and the initial rate of proton influx is stimulated by valinomycin and abolished by nigericin or carbonyl cyanide m-chlorophenylhydrazone [12].
  • Similarly, incubation with the uncouplers 2,4-dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone increased accumulation up to fourfold in E. coli and P. aeruginosa, though not in S. aureus, suggesting endogenous, energy-dependent efflux [13].
  • Similarly, nongrowing E. coli 25922, whose EC had been artificially lowered to less than 0.1 by the addition of the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), was able to immediately step up the EC to 0.8 to 0.9 upon the addition of glucose but was unable to respond to respiratory substrates [14].
  • Like E. coli, but unlike wild-type V. cholerae, motility of some V. cholerae strains containing the hybrid motor was inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone under neutral as well as alkaline conditions but not by the sodium motor-specific inhibitor phenamil [15].

Biological context of NC-CO-CN


Anatomical context of NC-CO-CN


Associations of NC-CO-CN with other chemical compounds

  • We found that dissipation of this gradient by the proton ionophores gramicidin, nigericin, and carbonyl cyanide p-trichloromethoxyphenylhydrazone caused a rapid transient tension in skinned rabbit psoas muscle fibers [26].
  • Uptake into hepatocytes was time and temperature dependent and was decreased by the inhibitors diisothiocyanodisulfonic acid stilbene, probenecid and carbonyl cyanide chlorophenyl hydrazone, demonstrating carrier mediation and energy dependence [27].
  • The protonophore carbonyl cyanide m-chlorophenylhydrazone increased uptake at pH 5.0 while valinomycin/KCl had no effect [28].
  • The processing of the precursor by the isolated mitochondria was strongly inhibited by both 0.1 mM dinitrophenol and 1 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone [29].
  • 45Ca2+ in the slowly exchanging pool was released with markers for both the dense tubular system and mitochondria, but inhibition of mitochondrial Ca2+ uptake with carbonyl cyanide m-chlorophenylhydrazone had no effect on the size of the slowly exchangeable Ca2+ pool or the cytosolic free Ca2+ concentration [30].

Gene context of NC-CO-CN

  • This activity was further stimulated 3-fold by the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone, which suggests that PPA2 is part of an energy-linked enzyme [31].
  • ERK activation was attenuated by inhibitors of the electron transport chain proton pumps (rotenone and antimycin A) and an uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone), suggesting that mitochondrial inner membrane potential plays a key role in the signaling pathway [32].
  • METHODS: Yeast were transformed with uncoupling protein-2 (UCP2) or exposed to carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) or rotenone [33].
  • Mitochondrial PHGPx failed to protect M15 cells from mitochondrial injury by carbonyl cyanide m-chlorophenylhydrazone, which directly reduces membrane potential without the generation of hydroperoxides [34].
  • RsbT, RsbV, and sigmaB were all required for opuCA expression during growth under carbon-limiting conditions or following exposure to pH 4.5, salt, ethanol, or the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) [35].

Analytical, diagnostic and therapeutic context of NC-CO-CN


  1. Processing of the rough endoplasmic reticulum membrane glycoproteins of rotavirus SA11. Kabcenell, A.K., Atkinson, P.H. J. Cell Biol. (1985) [Pubmed]
  2. Fast responses of bacterial membranes to virus adsorption: a fluorescence study. Bayer, M.E., Bayer, M.H. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  3. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. Lehrer, R.I., Szklarek, D., Barton, A., Ganz, T., Hamann, K.J., Gleich, G.J. J. Immunol. (1989) [Pubmed]
  4. Generation of Na+ electrochemical potential by the Na+-motive NADH oxidase and Na+/H+ antiport system of a moderately halophilic Vibrio costicola. Udagawa, T., Unemoto, T., Tokuda, H. J. Biol. Chem. (1986) [Pubmed]
  5. Purification and reconstitution of Na+-translocating vacuolar ATPase from Enterococcus hirae. Murata, T., Takase, K., Yamato, I., Igarashi, K., Kakinuma, Y. J. Biol. Chem. (1997) [Pubmed]
  6. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Musil, L.S., Goodenough, D.A. Cell (1993) [Pubmed]
  7. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. Hoth, M., Fanger, C.M., Lewis, R.S. J. Cell Biol. (1997) [Pubmed]
  8. Carboxy terminally truncated forms of ribophorin I are degraded in pre-Golgi compartments by a calcium-dependent process. Tsao, Y.S., Ivessa, N.E., Adesnik, M., Sabatini, D.D., Kreibich, G. J. Cell Biol. (1992) [Pubmed]
  9. Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. Doms, R.W., Russ, G., Yewdell, J.W. J. Cell Biol. (1989) [Pubmed]
  10. Metabolic inhibitors block anaphase A in vivo. Hepler, P.K., Palevitz, B.A. J. Cell Biol. (1986) [Pubmed]
  11. Responses of type I cells dissociated from the rabbit carotid body to hypoxia. Biscoe, T.J., Duchen, M.R. J. Physiol. (Lond.) (1990) [Pubmed]
  12. Direct measurement of lactose/proton symport in Escherichia coli membrane vesicles: further evidence for the involvement of histidine residue(s). Patel, L., Garcia, M.L., Kaback, H.R. Biochemistry (1982) [Pubmed]
  13. Quinolone accumulation in Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. McCaffrey, C., Bertasso, A., Pace, J., Georgopapadakou, N.H. Antimicrob. Agents Chemother. (1992) [Pubmed]
  14. Viability and metabolic capability are maintained by Escherichia coli, Pseudomonas aeruginosa, and Streptococcus lactis at very low adenylate energy charge. Barrette, W.C., Hannum, D.M., Wheeler, W.D., Hurst, J.K. J. Bacteriol. (1988) [Pubmed]
  15. Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli. Gosink, K.K., Häse, C.C. J. Bacteriol. (2000) [Pubmed]
  16. Calcium and calmodulin are involved in blue light induction of the gsa gene for an early chlorophyll biosynthetic step in Chlamydomonas. Im, C.S., Matters, G.L., Beale, S.I. Plant Cell (1996) [Pubmed]
  17. Cellular cyclic nucleotides and enzyme secretion in the pancreatic acinar cell. Haymovits, A., Scheele, G.A. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  18. Role of anions in parathyroid hormone release from dispersed bovine parathyroid cells. Brown, E.M., Pazoles, C.J., Creutz, C.E., Aurbach, G.D., Pollard, H.B. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  19. Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. Werth, J.L., Thayer, S.A. J. Neurosci. (1994) [Pubmed]
  20. Functions of potA and potD proteins in spermidine-preferential uptake system in Escherichia coli. Kashiwagi, K., Miyamoto, S., Nukui, E., Kobayashi, H., Igarashi, K. J. Biol. Chem. (1993) [Pubmed]
  21. Calcium transport of Plasmodium chabaudi-infected erythrocytes. Tanabe, K., Mikkelsen, R.B., Wallach, D.F. J. Cell Biol. (1982) [Pubmed]
  22. Processing of MOPC 315 immunoglobulin A oligosaccharides: evidence for endoplasmic reticulum and trans Golgi alpha 1,2-mannosidase activity. Hickman, S., Theodorakis, J.L., Greco, J.M., Brown, P.H. J. Cell Biol. (1984) [Pubmed]
  23. Acidification of endocytic vesicles by an ATP-dependent proton pump. Yamashiro, D.J., Fluss, S.R., Maxfield, F.R. J. Cell Biol. (1983) [Pubmed]
  24. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Ohkuma, S., Moriyama, Y., Takano, T. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  25. Protein dissociation from GRP78 and secretion are blocked by depletion of cellular ATP levels. Dorner, A.J., Wasley, L.C., Kaufman, R.J. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  26. A proton gradient controls a calcium-release channel in sarcoplasmic reticulum. Shoshan, V., MacLennan, D.H., Wood, D.S. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  27. Characterization of the transport of a synthetic bile salt, iodinated cholyl-glycyl-tyrosine, in isolated cultured rat hepatocytes. Deutsch, J.C., Iwahashi, M.M., Sutherland, E.M., Mapoles, J., Simon, F.R. Hepatology (1992) [Pubmed]
  28. Sulfate transport by rat liver lysosomes. Jonas, A.J., Jobe, H. J. Biol. Chem. (1990) [Pubmed]
  29. Uptake and processing of the precursor for rat liver ornithine transcarbamylase by isolated mitochondria. Inhibition by uncouplers. Mori, M., Morita, T., Miura, S., Tatibana, M. J. Biol. Chem. (1981) [Pubmed]
  30. Ca2+ homeostasis in unstimulated platelets. Brass, L.F. J. Biol. Chem. (1984) [Pubmed]
  31. Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function. Lundin, M., Baltscheffsky, H., Ronne, H. J. Biol. Chem. (1991) [Pubmed]
  32. Activation of mitogen-activated protein kinases by lysophosphatidylcholine-induced mitochondrial reactive oxygen species generation in endothelial cells. Watanabe, N., Zmijewski, J.W., Takabe, W., Umezu-Goto, M., Goffe, C.L., Sekine, A., Landar, A., Watanabe, A., Aoki, J., Arai, H., Kodama, T., Murphy, M.P., Kalyanaraman, R., Darley-Usmar, V.M., Noguchi, N. Am. J. Pathol. (2006) [Pubmed]
  33. Development of infrared imaging to measure thermogenesis in cell culture: thermogenic effects of uncoupling protein-2, troglitazone, and beta-adrenoceptor agonists. Paulik, M.A., Buckholz, R.G., Lancaster, M.E., Dallas, W.S., Hull-Ryde, E.A., Weiel, J.E., Lenhard, J.M. Pharm. Res. (1998) [Pubmed]
  34. Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. Arai, M., Imai, H., Koumura, T., Yoshida, M., Emoto, K., Umeda, M., Chiba, N., Nakagawa, Y. J. Biol. Chem. (1999) [Pubmed]
  35. SigmaB activation under environmental and energy stress conditions in Listeria monocytogenes. Chaturongakul, S., Boor, K.J. Appl. Environ. Microbiol. (2006) [Pubmed]
  36. Inhibition by dicyclohexylcarbodiimide of proton ejection but not electron transfer in rat liver mitochondria. Clejan, L., Bosch, C.G., Beattie, D.S. J. Biol. Chem. (1984) [Pubmed]
  37. Biosynthesis and topogenesis of aspartate aminotransferase isoenzymes in chicken embryo fibroblasts. The precursor of the mitochondrial isoenzyme is either imported into mitochondria or degraded in the cytosol. Jaussi, R., Sonderegger, P., Flückiger, J., Christen, P. J. Biol. Chem. (1982) [Pubmed]
  38. Diastolic coronary resistance in the isolated rabbit heart during and after ischaemia: contribution of extravascular forces. Fleetwood, G., Poole-Wilson, P.A. Cardiovasc. Res. (1986) [Pubmed]
  39. Structure-function relationship of antibacterial synthetic peptides homologous to a helical surface region on human lactoferrin against Escherichia coli serotype O111. Chapple, D.S., Mason, D.J., Joannou, C.L., Odell, E.W., Gant, V., Evans, R.W. Infect. Immun. (1998) [Pubmed]
  40. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. Pournaras, S., Markogiannakis, A., Ikonomidis, A., Kondyli, L., Bethimouti, K., Maniatis, A.N., Legakis, N.J., Tsakris, A. J. Antimicrob. Chemother. (2006) [Pubmed]
WikiGenes - Universities