Interactions among Drosophila nuclear envelope proteins lamin, otefin, and YA.
The nuclear envelope plays many roles, including organizing nuclear structure and regulating nuclear events. Molecular associations of nuclear envelope proteins may contribute to the implementation of these functions. Lamin, otefin, and YA are the three Drosophila nuclear envelope proteins known in early embryos. We used the yeast two-hybrid system to explore the interactions between pairs of these proteins. The ubiquitous major lamina protein, lamin Dm, interacts with both otefin, a peripheral protein of the inner nuclear membrane, and YA, an essential, developmentally regulated protein of the nuclear lamina. In agreement with this interaction, lamin and otefin can be coimmunoprecipitated from the vesicle fraction of Drosophila embryos and colocalize in nuclear envelopes of Drosophila larval salivary gland nuclei. The two-hybrid system was further used to map the domains of interaction among lamin, otefin, and YA. Lamin's rod domain interacts with the complete otefin protein, with otefin's hydrophilic NH2-terminal domain, and with two different fragments derived from this domain. Analogous probing of the interaction between lamin and YA showed that the lamin rod and tail plus part of its head domain are needed for interaction with full-length YA in the two-hybrid system. YA's COOH-terminal region is necessary and sufficient for interaction with lamin. Our results suggest that interactions with lamin might mediate or stabilize the localization of otefin and YA in the nuclear lamina. They also suggest that the need for both otefin and lamin in mediating association of vesicles with chromatin might reflect the function of a protein complex that includes these two proteins.[1]References
- Interactions among Drosophila nuclear envelope proteins lamin, otefin, and YA. Goldberg, M., Lu, H., Stuurman, N., Ashery-Padan, R., Weiss, A.M., Yu, J., Bhattacharyya, D., Fisher, P.A., Gruenbaum, Y., Wolfner, M.F. Mol. Cell. Biol. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg