The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Lam  -  Lamin

Drosophila melanogaster

Synonyms: 2459, 74/76, CG6944, D5, DM[[O]], ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Lam


High impact information on Lam

  • Consistently, proximity of genomic regions to the nuclear lamina is partly conserved between cell types, and induction of gene expression or active histone marks reduces Lam binding [6].
  • Lam target genes cluster in the genome, and these clusters are coordinately expressed during development [6].
  • Antibodies directed against nuclear envelope lamin proteins have been used in conjunction with three-dimensional light and electron microscope methodologies to determine the spatial organization of lamins in diploid interphase nuclei and to relate this organization to the positions of chromatin in the nuclear periphery [7].
  • Using Drosophila early embryos, Drosophila Kc cells, and human HeLa cells, it is qualitatively and quantitatively observed that lamins are organized as a highly discontinuous, apparently fibrillar network that leaves large voids in the nuclear periphery containing little or no lamin [7].
  • The sequence organization and positions of the tRNA genes in a tRNA gene cluster at chromosomal region 42A of the D. melanogaster (Dm) genome have been studied by recombinant DNA methods [8].

Biological context of Lam

  • These transgenic animals display a nuclear lamin aggregation phenotype remarkably similar to that observed when human mutant A-type lamins are expressed in mammalian cells [9].
  • Substituting either of the threonine residues in the TRAT sequence with negatively charged residues decreases the binding of lamin Dm(0) to chromatin, indicating that this binding could be regulated by phosphorylation [10].
  • Taken together, these results suggest that specific residues in lamin Dm(0) and histone H2A mediate the attachment of the nuclear lamina to chromosomes in vivo, which could have implications on the understanding of laminopathic diseases [10].
  • Thus, our results suggest that the JIL-1 kinase is required to maintain nuclear morphology and integrity of nurse cells during oogenesis and that this function may be linked to molecular interactions with lamin Dm0 [11].
  • Two isoforms of a single nuclear lamin, distinguishable on one-dimensional SDS-polyacrylamide gels, have previously been identified in Drosophila nuclei during interphase [12].

Anatomical context of Lam


Associations of Lam with chemical compounds


Physical interactions of Lam

  • The JIL-1 kinase interacts with lamin Dm0 and regulates nuclear lamina morphology of Drosophila nurse cells [11].
  • Here, we show that C-terminal lamin-interacting region of YA is sufficient to target the heterologous soluble protein GFP-NLS to the nuclear periphery in Drosophila tissue culture cells [21].
  • Fourth, the N-terminal domain of dLBR is sufficient for in vitro binding to sperm chromatin and lamin Dm0 [22].
  • Interactions between coiled-coil proteins: Drosophila lamin Dm0 binds to the bicaudal-D protein [23].
  • We show that the polymerized alpha-helical rod domain of lamin Dm0 provides by itself the specific binding to the ftz M/SAR [24].

Co-localisations of Lam


Regulatory relationships of Lam

  • Kc cells contain products of both lamin genes, the lamin Dm0 gene encoding constitutive polypeptides expressed in almost all cell types and the developmentally regulated lamin C gene [27].
  • Third, we mutated tailless lamin using two point mutations known to inhibit head-to-tail association of full-length lamin [28].

Other interactions of Lam

  • The Klarsicht/lamin interaction provides a framework for understanding the mechanistic basis of human laminopathies [14].
  • Expression of Drosophila lamin C is similar to that of vertebrate lamin A (plus C), which loses its CaaX motif during incorporation into the lamina [15].
  • They also suggest that the need for both otefin and lamin in mediating association of vesicles with chromatin might reflect the function of a protein complex that includes these two proteins [13].
  • The two-hybrid system was further used to map the domains of interaction among lamin, otefin, and YA [13].
  • In contrast, when lamin DmO was reduced by RNAi the distribution of Bocksbeutel and otefin in the nuclear envelope of Kc167 cells was significantly altered [29].

Analytical, diagnostic and therapeutic context of Lam


  1. Null mutants of Drosophila B-type lamin Dm(0) show aberrant tissue differentiation rather than obvious nuclear shape distortion or specific defects during cell proliferation. Osouda, S., Nakamura, Y., de Saint Phalle, B., McConnell, M., Horigome, T., Sugiyama, S., Fisher, P.A., Furukawa, K. Dev. Biol. (2005) [Pubmed]
  2. Assembly of Drosophila lamin Dm0 and C mutant proteins studied with the baculovirus system. Krohne, G., Stuurman, N., Kempf, A. Eur. J. Cell Biol. (1998) [Pubmed]
  3. The nuclear membrane-associated honeycomb structure of the unicellular organism Amoeba proteus: on the search for homologies with the nuclear lamina of metazoa. Schmidt, M., Grossmann, U., Krohne, G. Eur. J. Cell Biol. (1995) [Pubmed]
  4. Mushroom body influence on locomotor activity and circadian rhythms in Drosophila melanogaster. Helfrich-Förster, C., Wulf, J., de Belle, J.S. J. Neurogenet. (2002) [Pubmed]
  5. Insect cell cultures in the study of attachment and pathogenicity of spiroplasmas and mycoplasmas. Steiner, T., McGarrity, G.J., Bové, J.M., Phillips, D.M., Garnier, M. Ann. Microbiol. (Paris) (1984) [Pubmed]
  6. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Pickersgill, H., Kalverda, B., de Wit, E., Talhout, W., Fornerod, M., van Steensel, B. Nat. Genet. (2006) [Pubmed]
  7. Interphase nuclear envelope lamins form a discontinuous network that interacts with only a fraction of the chromatin in the nuclear periphery. Paddy, M.R., Belmont, A.S., Saumweber, H., Agard, D.A., Sedat, J.W. Cell (1990) [Pubmed]
  8. The gross anatomy of a tRNA gene cluster at region 42A of the D. melanogaster chromosome. Yen, P.H., Davidson, N. Cell (1980) [Pubmed]
  9. Molecular genetic analysis of the nested Drosophila melanogaster lamin C gene. Schulze, S.R., Curio-Penny, B., Li, Y., Imani, R.A., Rydberg, L., Geyer, P.K., Wallrath, L.L. Genetics (2005) [Pubmed]
  10. Specific and conserved sequences in D. melanogaster and C. elegans lamins and histone H2A mediate the attachment of lamins to chromosomes. Mattout, A., Goldberg, M., Tzur, Y., Margalit, A., Gruenbaum, Y. J. Cell. Sci. (2007) [Pubmed]
  11. The JIL-1 kinase interacts with lamin Dm0 and regulates nuclear lamina morphology of Drosophila nurse cells. Bao, X., Zhang, W., Krencik, R., Deng, H., Wang, Y., Girton, J., Johansen, J., Johansen, K.M. J. Cell. Sci. (2005) [Pubmed]
  12. Interconversion of Drosophila nuclear lamin isoforms during oogenesis, early embryogenesis, and upon entry of cultured cells into mitosis. Smith, D.E., Fisher, P.A. J. Cell Biol. (1989) [Pubmed]
  13. Interactions among Drosophila nuclear envelope proteins lamin, otefin, and YA. Goldberg, M., Lu, H., Stuurman, N., Ashery-Padan, R., Weiss, A.M., Yu, J., Bhattacharyya, D., Fisher, P.A., Gruenbaum, Y., Wolfner, M.F. Mol. Cell. Biol. (1998) [Pubmed]
  14. The functions of Klarsicht and nuclear lamin in developmentally regulated nuclear migrations of photoreceptor cells in the Drosophila eye. Patterson, K., Molofsky, A.B., Robinson, C., Acosta, S., Cater, C., Fischer, J.A. Mol. Biol. Cell (2004) [Pubmed]
  15. Expression of Drosophila lamin C is developmentally regulated: analogies with vertebrate A-type lamins. Riemer, D., Stuurman, N., Berrios, M., Hunter, C., Fisher, P.A., Weber, K. J. Cell. Sci. (1995) [Pubmed]
  16. Assembly of A- and B-type lamins studied in vivo with the baculovirus system. Klapper, M., Exner, K., Kempf, A., Gehrig, C., Stuurman, N., Fisher, P.A., Krohne, G. J. Cell. Sci. (1997) [Pubmed]
  17. Interphase phosphorylation of the Drosophila nuclear lamin: site-mapping using a monoclonal antibody. Stuurman, N., Maus, N., Fisher, P.A. J. Cell. Sci. (1995) [Pubmed]
  18. Scaffold attachment of DNA loops in metaphase chromosomes. Mirkovitch, J., Gasser, S.M., Laemmli, U.K. J. Mol. Biol. (1988) [Pubmed]
  19. Intermediate filament protein polymerization: molecular analysis of Drosophila nuclear lamin head-to-tail binding. Stuurman, N., Sasse, B., Fisher, P.A. J. Struct. Biol. (1996) [Pubmed]
  20. Structural organization of the human gene (LMNB1) encoding nuclear lamin B1. Lin, F., Worman, H.J. Genomics (1995) [Pubmed]
  21. A hydrophilic lamin-binding domain from the Drosophila YA protein can target proteins to the nuclear envelope. Mani, S.S., Rajagopal, R., Garfinkel, A.B., Fan, X., Wolfner, M.F. J. Cell. Sci. (2003) [Pubmed]
  22. The lamin B receptor of Drosophila melanogaster. Wagner, N., Weber, D., Seitz, S., Krohne, G. J. Cell. Sci. (2004) [Pubmed]
  23. Interactions between coiled-coil proteins: Drosophila lamin Dm0 binds to the bicaudal-D protein. Stuurman, N., Häner, M., Sasse, B., Hübner, W., Suter, B., Aebi, U. Eur. J. Cell Biol. (1999) [Pubmed]
  24. Binding of matrix attachment regions to nuclear lamin is mediated by the rod domain and depends on the lamin polymerization state. Zhao, K., Harel, A., Stuurman, N., Guedalia, D., Gruenbaum, Y. FEBS Lett. (1996) [Pubmed]
  25. Localization and posttranslational modifications of otefin, a protein required for vesicle attachment to chromatin, during Drosophila melanogaster development. Ashery-Padan, R., Ulitzur, N., Arbel, A., Goldberg, M., Weiss, A.M., Maus, N., Fisher, P.A., Gruenbaum, Y. Mol. Cell. Biol. (1997) [Pubmed]
  26. The Drosophila Su(var)2-10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. Hari, K.L., Cook, K.R., Karpen, G.H. Genes Dev. (2001) [Pubmed]
  27. In vivo phosphorylation of Drosophila melanogaster nuclear lamins during both interphase and mitosis. Rzepecki, R., Fisher, P.A. Cell. Mol. Biol. Lett. (2002) [Pubmed]
  28. A tailless Drosophila lamin Dm0 fragment reveals lateral associations of dimers. Sasse, B., Aebi, U., Stuurman, N. J. Struct. Biol. (1998) [Pubmed]
  29. Two novel LEM-domain proteins are splice products of the annotated Drosophila melanogaster gene CG9424 (Bocksbeutel). Wagner, N., Schmitt, J., Krohne, G. Eur. J. Cell Biol. (2004) [Pubmed]
  30. Drosophila nuclear lamin precursor Dm0 is translated from either of two developmentally regulated mRNA species apparently encoded by a single gene. Gruenbaum, Y., Landesman, Y., Drees, B., Bare, J.W., Saumweber, H., Paddy, M.R., Sedat, J.W., Smith, D.E., Benton, B.M., Fisher, P.A. J. Cell Biol. (1988) [Pubmed]
  31. Persistence of major nuclear envelope antigens in an envelope-like structure during mitosis in Drosophila melanogaster embryos. Harel, A., Zlotkin, E., Nainudel-Epszteyn, S., Feinstein, N., Fisher, P.A., Gruenbaum, Y. J. Cell. Sci. (1989) [Pubmed]
  32. The Drosophila melanogaster LEM-domain protein MAN1. Wagner, N., Kagermeier, B., Loserth, S., Krohne, G. Eur. J. Cell Biol. (2006) [Pubmed]
WikiGenes - Universities